Vnitr Lek 2014, 60(10):852-858

Plicní hypertenze - patofyziologické mechanizmy

Martin Helán1,2,*, Anna Konieczna2,3, Martin Klabusay2,3, Vladimír Šrámek1
1 Anesteziologickoresuscitační klinika LF MU a FN u sv. Anny Brno, přednosta doc. MUDr. Vladimír Šrámek, Ph.D.
2 Mezinárodní centrum klinického výzkumu FN u sv. Anny Brno, ředitel Gorazd B. Stokin, M.D., MSc., Ph.D.
3 LF UP Olomouc, děkan prof. MUDr. Milan Kolář, Ph.D.

Plicní hypertenze (PH) je onemocnění s bohatou etiologií. Také její patofyziologie je značně složitá a možnosti léčby zatím omezené. Většina známých patofyziologických mechanizmů se uplatňuje napříč všemi etiologickými skupinami PH a dochází u nich ke stejným histologickým a funkčním změnám plicní arterie. Většinou však stále nejsme schopni určit, zda příslušný mechanizmus je příčinou nebo následkem jiných. Hlavní funkční změnou plicního řečiště při PH je nerovnováha mezi vazokonstrikcí a vazodilatací. Mezi hlavní morfologické změny označované souhrnně jako remodeling patří hyperplazie buněk plicní arterie vedoucí k jejímu ztluštění a zúžení lumen a dále porušená regulace tvorby extracelulární matrix vedoucí ke snížení její elasticity. Důsledkem všech těchto změn je narůstající periferní vaskulární rezistence plicního řečiště, tedy zvyšování afterloadu pravé srdeční komory progredující až k jejímu selhání. Tento přehledový článek si klade za cíl shrnout a vysvětlit podstatu funkčních a histologických změn plicního řečiště, ke kterým dochází při plicní hypertenzi, odděleně definovat role endotelu a myocytů plicní arterie a představit nejdůležitější známé patofyziologické mechanizmy, které k těmto změnám vedou.

Klíčová slova: endotel; myocyt; oxid dusnatý; plicní arterie; plicní hypertenze; regulace intracelulárního kalcia; remodeling

Pulmonary hypertension - disease mechanisms

Pulmonary hypertension (PH) is known for its variable etiology. PH pathophysiology is very complex and our therapeutic options are limited. Most of known underlying disease mechanisms play a role across all etiological groups of PH, and they are followed by the same morphological and functional changes of pulmonary vasculature. Mostly, we are not able to determine whether one particular mechanism works as a cause or consequence in the chain of events. An imbalance between vasoconstriction and vasodilation becomes the major functional change of pulmonary vasculature in PH. The main morphological changes (termed together as "remodeling") include cell hyperplasia of pulmonary artery leading to its thickening and narrowing, and impaired regulation of extracellular matrix production leading to reduction in its elasticity. As a result of all these changes, the peripheral vascular resistance in pulmonary vascular bed rises, thus increasing afterload of the right ventricle and finally progressing to its failure. This review aims to summarize and explain the nature of the functional and histological changes in pulmonary arteries which occur in pulmonary hypertension, separately define the role of endothelium and pulmonary artery myocytes, and discuss the most important known pathophysiological mechanisms that lead to these changes.

Keywords: endothelium; intracellular calcium signaling; nitric oxide; pulmonary artery; pulmonary hypertension; remodeling; smooth muscle cell

Vloženo: 11. květen 2014; Přijato: 30. červen 2014; Zveřejněno: 1. říjen 2014  Zobrazit citaci

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Helán M, Konieczna A, Klabusay M, Šrámek V. Plicní hypertenze - patofyziologické mechanizmy. Vnitr Lek. 2014;60(10):852-858.
Stáhnout citaci

Reference

  1. Simonneau G, Gatzoulis MA, Adatia I et al. Updated Clinical Classification of Pulmonary Hypertension. J Am Coll Cardiol 2013; 62(25 Suppl): D34-D41. Přejít k původnímu zdroji... Přejít na PubMed...
  2. Stewart DJ, Levy RD, Cernacek P et al. Increased Plasma Endothelin-1 in Pulmonary Hypertension: Marker or Mediator of Disease? Ann Intern Med 1991; 114(6): 464-469. Přejít k původnímu zdroji... Přejít na PubMed...
  3. Dupuis J, Cernacek P, Tardif JC et al. Reduced pulmonary clearance of endothelin-1 in pulmonary hypertension. Am Heart J 1998; 135(4): 614-620. Přejít k původnímu zdroji... Přejít na PubMed...
  4. Kéreveur A, Callebert J, Humbert M et al. High Plasma Serotonin Levels in Primary Pulmonary Hypertension Effect of Long-Term Epoprostenol (Prostacyclin) Therapy. Arterioscler Thromb Vasc Biol 2000; 20(10): 2233-2239. Přejít k původnímu zdroji... Přejít na PubMed...
  5. Christman BW, McPherson CD, Newman JH et al. An Imbalance between the Excretion of Thromboxane and Prostacyclin Metabolites in Pulmonary Hypertension. N Engl J Med 1992; 327(2): 70-75. Přejít k původnímu zdroji... Přejít na PubMed...
  6. Yoshibayashi M, Nishioka K, Nakao K et al. Plasma endothelin concentrations in patients with pulmonary hypertension associated with congenital heart defects. Evidence for increased production of endothelin in pulmonary circulation. Circulation 1991; 84(6): 2280-2285. Přejít k původnímu zdroji... Přejít na PubMed...
  7. Giaid A, Saleh D. Reduced Expression of Endothelial Nitric Oxide Synthase in the Lungs of Patients with Pulmonary Hypertension. N Engl J Med 1995; 333(4): 214-221. Přejít k původnímu zdroji... Přejít na PubMed...
  8. Frid MG, Brunetti JA, Burke DL et al. Hypoxia-Induced Pulmonary Vascular Remodeling Requires Recruitment of Circulating Mesenchymal Precursors of a Monocyte/Macrophage Lineage. Am J Pathol 2006; 168(2): 659-669. Přejít k původnímu zdroji... Přejít na PubMed...
  9. Frid MG, Kale VA, Stenmark KR. Mature Vascular Endothelium Can Give Rise to Smooth Muscle Cells via Endothelial-Mesenchymal Transdifferentiation In Vitro Analysis. Circ Res 2002; 90(11): 1189-1196. Přejít k původnímu zdroji... Přejít na PubMed...
  10. Tuder RM, Groves B, Badesch DB et al. Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol 1994; 144(2): 275-285.
  11. Crouch EC, Parks WC, Rosenbaum JL et al. Regulation of collagen production by medial smooth muscle cells in hypoxic pulmonary hypertension. Am Rev Respir Dis 1989; 140(4): 1045-1051. Přejít k původnímu zdroji... Přejít na PubMed...
  12. Jones PL, Cowan KN, Rabinovitch M. Tenascin-C, proliferation and subendothelial fibronectin in progressive pulmonary vascular disease. Am J Pathol 1997; 150(4): 1349-1360.
  13. Botney MD, Kaiser LR, Cooper JD et al. Extracellular matrix protein gene expression in atherosclerotic hypertensive pulmonary arteries. Am J Pathol 1992; 140(2): 357-364.
  14. Novotná J, Herget J. Exposure to chronic hypoxia induces qualitative changes of collagen in the walls of peripheral pulmonary arteries. Life Sci 1998; 62(1): 1-12. Přejít k původnímu zdroji... Přejít na PubMed...
  15. Chesler N, Wang Z. Pulmonary vascular wall stiffness: An important contributor to the increased right ventricular afterload with pulmonary hypertension. Pulm Circ 2011; 1(2): 212. Přejít k původnímu zdroji... Přejít na PubMed...
  16. Chaouat A, Weitzenblum E, Higenbottam T. The role of thrombosis in severe pulmonary hypertension. Eur Respir J 1996; 9(2): 356-363. Přejít k původnímu zdroji... Přejít na PubMed...
  17. Johnson SR, Mehta S, Granton JT. Anticoagulation in pulmonary arterial hypertension: a qualitative systematic review. Eur Respir J 2006; 28(5): 999-1004. Přejít k původnímu zdroji... Přejít na PubMed...
  18. Mirzapoiazova T, Kolosova I, Usatyuk PV et al. Diverse effects of vascular endothelial growth factor on human pulmonary endothelial barrier and migration. Am J Physiol Lung Cell Mol Physiol 2006; 291(4): L718-L724. Přejít k původnímu zdroji... Přejít na PubMed...
  19. Morrell NW, Adnot S, Archer SL et al. Cellular and Molecular Basis of Pulmonary Arterial Hypertension. J Am Coll Cardiol 2009; 54(1 Suppl): S20-S31. Přejít k původnímu zdroji... Přejít na PubMed...
  20. Hampl V, Herget J. Role of nitric oxide in the pathogenesis of chronic pulmonary hypertension. Physiol Rev 2000; 80(4): 1337-1372. Přejít k původnímu zdroji... Přejít na PubMed...
  21. Smith JD, McLean SD, Nakayama DK. Nitric Oxide Causes Apoptosis in Pulmonary Vascular Smooth Muscle Cells. J Surg Res 1998; 79(2): 121-127. Přejít k původnímu zdroji... Přejít na PubMed...
  22. Tanner FC, Meier P, Greutert H et al. Nitric Oxide Modulates Expression of Cell Cycle Regulatory Proteins A Cytostatic Strategy for Inhibition of Human Vascular Smooth Muscle Cell Proliferation. Circulation 2000; 101(16): 1982-1989. Přejít k původnímu zdroji... Přejít na PubMed...
  23. Mitchell JA, Ali F, Bailey L et al. Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium. Exp Physiol 2008; 93(1): 141-147. Přejít k původnímu zdroji... Přejít na PubMed...
  24. Jung F, Palmer LA, Zhou N et al. Hypoxic Regulation of Inducible Nitric Oxide Synthase via Hypoxia Inducible Factor-1 in Cardiac Myocytes. Circ Res 2000; 86(3): 319-325. Přejít k původnímu zdroji... Přejít na PubMed...
  25. Helan M, Aravamudan B, Hartman WR et al. BDNF secretion by human pulmonary artery endothelial cells in response to hypoxia. J Mol Cell Cardiol 2014; 68: 89-97. Přejít k původnímu zdroji... Přejít na PubMed...
  26. Dimmeler S, Fleming I, Fisslthaler B et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999; 399(6736): 601-605. Přejít k původnímu zdroji... Přejít na PubMed...
  27. Durante W, Johnson FK, Johnson RA. Arginase: A Critical Regulator of Nitric Oxide Synthesis and Vascular Function. Clin Exp Pharmacol Physiol 2007; 34(9): 906-911. Přejít k původnímu zdroji... Přejít na PubMed...
  28. Xu W, Kaneko FT, Zheng S et al. Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension. FASEB J 2004; 18(14): 1746-1748. Přejít k původnímu zdroji... Přejít na PubMed...
  29. Morris CR, Morris SM, Hagar W et al. Arginine Therapy: A New Treatment for Pulmonary Hypertension in Sickle Cell Disease? Am J Respir Crit Care Med 2003; 168(1): 63-69. Přejít k původnímu zdroji... Přejít na PubMed...
  30. Nagaya N, Uematsu M, Oya H et al. Short-term Oral Administration of L-Arginine Improves Hemodynamics and Exercise Capacity in Patients with Precapillary Pulmonary Hypertension. Am J Respir Crit Care Med 2001; 163(4): 887-891. Přejít k původnímu zdroji... Přejít na PubMed...
  31. Al-Hiti H, Chovanec M, Melenovský V et al. L-arginine in combination with sildenafil potentiates the attenuation of hypoxic pulmonary hypertension in rats. Physiol Res 2013; 62(6): 589-595. Přejít k původnímu zdroji... Přejít na PubMed...
  32. Gomberg-Maitland M, Olschewski H. Prostacyclin therapies for the treatment of pulmonary arterial hypertension. Eur Respir J 2008; 31(4): 891-901. Přejít k původnímu zdroji... Přejít na PubMed...
  33. Janakidevi K, Fisher MA, Del Vecchio PJ et al. Endothelin-1 stimulates DNA synthesis and proliferation of pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol 1992; 263(6 Pt 1): C1295-C1301. Přejít k původnímu zdroji... Přejít na PubMed...
  34. Davie N, Haleen SJ, Upton PD et al. ETA and ETB Receptors Modulate the Proliferation of Human Pulmonary Artery Smooth Muscle Cells. Am J Respir Crit Care Med 2002; 165(3): 398-405. Přejít k původnímu zdroji... Přejít na PubMed...
  35. Meoli DF, White RJ. Endothelin-1 induces pulmonary but not aortic smooth muscle cell migration by activating ERK1/2 MAP kinase. Can J Physiol Pharmacol 2010; 88(8): 830-839. Přejít k původnímu zdroji... Přejít na PubMed...
  36. Wagner OF, Christ G, Wojta J et al. Polar secretion of endothelin-1 by cultured endothelial cells. J Biol Chem 1992; 267(23): 16066-16068. Přejít k původnímu zdroji... Přejít na PubMed...
  37. Shi-Wen X, Renzoni EA, Kennedy L et al. Endogenous endothelin-1 signaling contributes to type I collagen and CCN2 overexpression in fibrotic fibroblasts. Matrix Biol 2007; 26(8): 625-632. Přejít k původnímu zdroji... Přejít na PubMed...
  38. Gallelli L, Pelaia G, D'Agostino B et al. Endothelin-1 induces proliferation of human lung fibroblasts and IL-11 secretion through an ETA receptor-dependent activation of map kinases. J Cell Biochem 2005; 96(4): 858-868. Přejít k původnímu zdroji... Přejít na PubMed...
  39. Okuda Y, Tsurumaru K, Suzuki S et al. Hypoxia and endothelin-1 induce VEGF production in human vascular smooth muscle cells. Life Sci 1998; 63(6): 477-484. Přejít k původnímu zdroji... Přejít na PubMed...
  40. Nootens M, Kaufmann E, Rector T et al. Neurohormonal activation in patients with right ventricular failure from pulmonary hypertension: Relation to hemodynamic variables and endothelin levels. J Am Coll Cardiol 1995; 26(7): 1581-1585. Přejít k původnímu zdroji... Přejít na PubMed...
  41. Gerber HP, Dixit V, Ferrara N. Vascular Endothelial Growth Factor Induces Expression of the Antiapoptotic Proteins Bcl-2 and A1 in Vascular Endothelial Cells. J Biol Chem 1998; 273(21): 13313-13316. Přejít k původnímu zdroji... Přejít na PubMed...
  42. Schuster DP, Crouch EC, Parks WC et al. Angiotensin converting enzyme expression in primary pulmonary hypertension. Am J Respir Crit Care Med 1996; 154(4 Pt 1): 1087-1091. Přejít k původnímu zdroji... Přejít na PubMed...
  43. Dorfmüller P, Zarka V, Durand-Gasselin I et al. Chemokine RANTES in Severe Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2002; 165(4): 534-539. Přejít k původnímu zdroji... Přejít na PubMed...
  44. Diller GP, Thum T, Wilkins MR et al. Endothelial progenitor cells in pulmonary arterial hypertension. Trends Cardiovasc Med 2010; 20(1): 22-29. Přejít k původnímu zdroji... Přejít na PubMed...
  45. Wang XX, Zhang FR, Shang YP et al. Transplantation of autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial hypertension: a pilot randomized controlled trial. J Am Coll Cardiol 2007; 49(14): 1566-1571. Přejít k původnímu zdroji... Přejít na PubMed...
  46. Kuhr FK, Smith KA, Song MY et al. New mechanisms of pulmonary arterial hypertension: role of Ca2+ signaling. Am J Physiol Heart Circ Physiol 2012; 302(8): H1546-H1562. Přejít k původnímu zdroji... Přejít na PubMed...
  47. Zhao L, Mason NA, Morrell NW et al. Sildenafil inhibits hypoxia-induced pulmonary hypertension. Circulation 2001; 104(4): 424-428. Přejít k původnímu zdroji... Přejít na PubMed...
  48. BelAiba RS, Djordjevic T, Bonello S et al. Redox-sensitive regulation of the HIF pathway under non-hypoxic conditions in pulmonary artery smooth muscle cells. Biol Chem 2004; 385(3-4): 249-257. Přejít k původnímu zdroji... Přejít na PubMed...
  49. Wang J, Weigand L, Lu W et al. Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res 2006; 98(12): 1528-1537. Přejít k původnímu zdroji... Přejít na PubMed...
  50. Abud EM, Maylor J, Undem C et al. Digoxin inhibits development of hypoxic pulmonary hypertension in mice. Proc Natl Acad Sci USA 2012; 109(4): 1239-1244. Přejít k původnímu zdroji... Přejít na PubMed...
  51. West JB. High-altitude medicine. Am J Respir Crit Care Med 2012; 186(12): 1229-1237. Přejít k původnímu zdroji... Přejít na PubMed...
  52. Simonson TS, Yang Y, Huff CD et al. Genetic evidence for high-altitude adaptation in Tibet. Science 2010; 329(5987): 72-75. Přejít k původnímu zdroji... Přejít na PubMed...
  53. Beall CM, Cavalleri GL, Deng L et al. Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci USA 2010; 107(25): 11459-11464. Přejít k původnímu zdroji... Přejít na PubMed...
  54. Ko EA, Wan J, Yamamura A et al. Functional characterization of voltage-dependent Ca(2+) channels in mouse pulmonary arterial smooth muscle cells: divergent effect of ROS. Am J Physiol Cell Physiol 2013; 304(11): C1042-C1052. Přejít k původnímu zdroji... Přejít na PubMed...
  55. Perez-Vizcaino F, Cogolludo A, Moreno L. Reactive oxygen species signaling in pulmonary vascular smooth muscle. Respir Physiol. Neurobiol 2010; 174(3): 212-220. Přejít k původnímu zdroji... Přejít na PubMed...
  56. Chovanec M. Role of reactive oxygen species and nitric oxide in development of the hypoxic pulmonary hypertension. Česk Fysiol 2013; 62(1): 4-9. Přejít na PubMed...
  57. Xia Y, Zweier JL. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci USA 1997; 94(13): 6954-6958. Přejít k původnímu zdroji... Přejít na PubMed...
  58. Masri FA, Comhair SAA, Dostanic-Larson I et al. Deficiency of lung antioxidants in idiopathic pulmonary arterial hypertension. Clin Transl Sci 2008; 1(2): 99-106. Přejít k původnímu zdroji... Přejít na PubMed...
  59. Lai YL, Wu HD, Chen CF. Antioxidants attenuate chronic hypoxic pulmonary hypertension. J Cardiovasc Pharmacol 1998; 32(5): 714-720. Přejít k původnímu zdroji... Přejít na PubMed...
  60. Lachmanová V, Hnilicková O, Povýsilová V et al. N-acetylcysteine inhibits hypoxic pulmonary hypertension most effectively in the initial phase of chronic hypoxia. Life Sci 2005; 77(2): 175-182. Přejít k původnímu zdroji... Přejít na PubMed...
  61. Okawa-Takatsuji M, Aotsuka S, Fujinami M et al. Up-regulation of intercellular adhesion molecule-1 (ICAM-1), endothelial leucocyte adhesion molecule-1 (ELAM-1) and class II MHC molecules on pulmonary artery endothelial cells by antibodies against U1-ribonucleoprotein. Clin Exp Immunol 1999; 116(1): 174-180. Přejít k původnímu zdroji... Přejít na PubMed...
  62. Lorenzen JM, Nickel N, Krämer R et al. Osteopontin in patients with idiopathic pulmonary hypertension. CHEST J 2011; 139(5): 1010-1017. Přejít k původnímu zdroji... Přejít na PubMed...
  63. Sanchez O, Marcos E, Perros F et al. Role of Endothelium-derived CC Chemokine Ligand 2 in Idiopathic Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2007; 176(10): 1041-1047. Přejít k původnímu zdroji... Přejít na PubMed...
  64. Selimovic N, Bergh C-H, Andersson B et al. Growth factors and interleukin-6 across the lung circulation in pulmonary hypertension. Eur Respir J 2009; 34(3): 662-668. Přejít k původnímu zdroji... Přejít na PubMed...
  65. Soon E, Holmes AM, Treacy CM et al. Elevated Levels of Inflammatory Cytokines Predict Survival in Idiopathic and Familial Pulmonary Arterial Hypertension. Circulation 2010; 122(9): 920-927. Přejít k původnímu zdroji... Přejít na PubMed...
  66. Sanchez O, Sitbon O, Jaïs X et al. Immunosuppressive therapy in connective tissue diseases-associated pulmonary arterial hypertension. CHEST J 2006; 130(1): 182-189. Přejít k původnímu zdroji... Přejít na PubMed...
  67. Li M, Scott DE, Shandas R et al. High pulsatility flow induces adhesion molecule and cytokine mRNA expression in distal pulmonary artery endothelial cells. Ann Biomed Eng 2009; 37(6): 1082-1092. Přejít k původnímu zdroji...
  68. Li M, Tan Y, Stenmark KR et al. High pulsatility flow induces acute endothelial inflammation through over polarizing cells to activate NF-κB. Cardiovasc Eng Technol 2013; 4(1): 26-38. Přejít k původnímu zdroji... Přejít na PubMed...
  69. Hsieh HJ, Cheng CC, Wu ST et al. Increase of reactive oxygen species (ROS) in endothelial cells by shear flow and involvement of ROS in shear-induced c-fos expression. J Cell Physiol 1998; 175(2): 156-162. Přejít k původnímu zdroji... Přejít na PubMed...
  70. Scott D, Tan Y, Shandas R et al. High pulsatility flow stimulates smooth muscle cell hypertrophy and contractile protein expression. Am J Physiol Lung Cell Mol Physiol 2013; 304(1): L70-L81. Přejít k původnímu zdroji... Přejít na PubMed...
  71. Li M, Stenmark KR, Shandas R et al. Effects of pathological flow on pulmonary artery endothelial production of vasoactive mediators and growth factors. J Vasc Res 2009; 46(6): 561-571. Přejít k původnímu zdroji... Přejít na PubMed...
  72. Deng Z, Morse JH, Slager SL et al. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet 2000; 67(3): 737-744. Přejít k původnímu zdroji... Přejít na PubMed...
  73. International PPH Consortium, Lane KB, Machado RD et al. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet 2000; 26(1): 81-84. Přejít k původnímu zdroji... Přejít na PubMed...
  74. Johnson DW, Berg JN, Baldwin MA et al. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 1996; 13(2): 189-195. Přejít k původnímu zdroji... Přejít na PubMed...
  75. McAllister KA, Grogg KM, Johnson DW et al. Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 1994; 8(4): 345-351. Přejít k původnímu zdroji... Přejít na PubMed...




Vnitřní lékařství

Vážená paní, pane,
upozorňujeme Vás, že webové stránky, na které hodláte vstoupit, nejsou určeny široké veřejnosti, neboť obsahují odborné informace o léčivých přípravcích, včetně reklamních sdělení, vztahující se k léčivým přípravkům. Tyto informace a sdělení jsou určena výhradně odborníkům dle §2a zákona č.40/1995 Sb., tedy osobám oprávněným léčivé přípravky předepisovat nebo vydávat (dále jen odborník).
Vezměte v potaz, že nejste-li odborník, vystavujete se riziku ohrožení svého zdraví, popřípadě i zdraví dalších osob, pokud byste získané informace nesprávně pochopil(a) či interpretoval(a), a to zejména reklamní sdělení, která mohou být součástí těchto stránek, či je využil(a) pro stanovení vlastní diagnózy nebo léčebného postupu, ať už ve vztahu k sobě osobně nebo ve vztahu k dalším osobám.

Prohlašuji:

  1. že jsem se s výše uvedeným poučením seznámil(a),
  2. že jsem odborníkem ve smyslu zákona č.40/1995 Sb. o regulaci reklamy v platném znění a jsem si vědom(a) rizik, kterým by se jiná osoba než odborník vstupem na tyto stránky vystavovala.


Ne

Ano

Pokud vaše prohlášení není pravdivé, upozorňujeme Vás,
že se vystavujete riziku ohrožení svého zdraví, popřípadě i zdraví dalších osob.