Vnitr Lek 2009, 55(12):1145-1158

Komplexita interakcií nádorového procesu

Z. Valášková1,*, S. Kiňová2, Ľ. Danihel3, I. Ďuriš2, D. Markovičová1, B. Mravec1,4, I. Hulín1
1 Oddelenie klinickej patofyziológie Ústavu patologickej fyziológie Lekárskej fakulty UK Bratislava, Slovenská republika, prednosta doc. MUDr. Marián Bernadič, CSc., mim. prof.
2 I. interná klinika Lekárskej fakulty UK a FN Bratislava, Slovenská republika, prednostka doc. MUDr. Soňa Kiňová, PhD.
3 Ústav patologickej anatómie Lekárskej fakulty UK Bratislava, Slovenská republika, prednosta prof. MUDr. Ľudovít Danihel, CSc.
4 Ústav experimentálnej endokrinológie SAV Bratislava, Slovenská republika, riaditeľ prof. MUDr. Iwar Klimeš, DrSc.

Pomerne dlho pretrvávali predstavy, že nádor je tvorený iba transformovanými bunkami, pre ktoré je typická hyperproliferácia, invazívnosť a imortalizácia buniek. Terapeutické stratégie boli preto zamerané na autonómnu proliferáciu a prežívanie nádorových buniek. Ide o vlastnosti podmienené aktiváciou onkogénov a inaktiváciou tumor-supresorových génov. Vedecké sledovania priniesli poznanie, že samotný rast nádoru je komplexným dejom. Okrem toho potvrdili účasť heterotypických multicelulárnych interakcií v nádorovom tkanive. Komplexita ako charakteristika sa priraďuje k tým dejom, ktoré nevykazujú vlastnosti lineárnych systémov. V priebehu nádorového rastu sú určité zákonitosti, ktoré nie je možné presne usporiadať z hľadiska trvania a následnosti. Preto ho môžeme považovať za dej so znakmi komplexity. Pri takomto pohľade nádorové prostredie tvoria viaceré druhy buniek, ako sú endotelové bunky a ich progenitorové bunky, pericyty, fibroblasty, fibroblasty asociované s nádorom, myofibroblasty, hladkosvalové bunky, žírne bunky, T- a B-lymfocyty, neutrofily, eozinofily, bazofily, NK-bunky a niekoľko foriem makrofágov. V súčasnosti sa opodstatnene predpokladá, že hlboké štúdium vnútorného prostredia nádorov môže viesť k formovaniu nových základov nádorovej biológie ako aj terapeutických postupov. Štúdium detailov mikroprostredia nádorov je potrebné z hľadiska vedeckého poznania a následne aj pre definovanie biomarkerov charakterizujúcich nádory. Ich sledovanie prehĺbi molekulovú diagnostiku. Biomarkery sa budú využívať v širokom meradle pre monitorovanie priebehu rastu nádorov a aj priebehu liečby. Sledovanie kombinácie biomarkerov umožní bližšie charakterizovať mikroprostredie nádorov. Okrem receptorov, signálnych molekúl, rastových faktorov, molekúl akcelerujúcich apoptózu to môžu byť nielen molekuly samotné, ale aj ich kombinácie, alebo charakteristiky neoangiogenézy, alebo inervácie nádorov. Komplexita nádorov zahrňuje nielen intracelulárne prostredie, ale aj intercelulárne vzťahy a vzťahy buniek s extracelulárnymi súčasťami nádorov. K doteraz známym skutočnostiam pribudne sledovanie cirkulujúcich nádorových buniek. Pre ich detekciu sa s veľkou pravdepodobnosťou budú využívať nízkomolekulové fluoreskujúce farbivá. Možno očakávať, že cirkulujúce nádorové bunky budú markerom prognózy i ukazovateľom progresie malignity a liečby. Vedecké bádanie prehĺbi individuálnu terapiu pacientov s nádorovými chorobami. V prehľadovej štúdii sme sa pokúsili analyzovať vedecké poznatky z pozície akceptácie zložitostí a heterogénnosti každého nádoru. Spracovanie obrovského množstva literatúry sme považovali za zmysluplné z hľadiska akceptácie nových poznatkov a teoretickej prípravy na očakávané zmeny diagnostiky a liečby nádorov. Predpokladáme, že prezentované poznatky sú užitočným krokom pre ucelený pohľad do mikroprostredia nádorov.

Klíčová slova: angiogenéza; inervácia nádorov; mikroprostredie nádoru; n. vagus; protizápalové pôsobenie nervového systému

The complexity of interactions of the tumour growth process

It was believed for rather a long time that the only components of tumour tissue are transformed cells characterised by hyper-proliferation, invasivity and immortalisation. Therapeutic strategies thus focused on autonomous proliferation and tumour cell survival. These result from oncogene activation and inactivation of tumour-suppressor genes. Research studies showed that tumour growth itself is a complex process. In addition, studies confirmed involvement of heterotypical multicellular interactions in tumour tissue. Complexity as a characteristic is one of the processes that do not demonstrate attributes of linear systems. The process of tumour growth involves certain patterns that cannot be classified according to duration and sequence. Consequently, tumour growth can be viewed as a process with features typical for complexity. From this perspective, tumour environment consists of a range of cells, such as endothelial cells and their progenitor cells, pericytes, fibroblasts, tumour-associated fibroblasts, myofibroblasts, smooth muscle cells, mast cells, T- and B-lymphocytes, neutrophils, eosinophils, basophils, NK-cells and several different forms of macrophages. At present, well-founded assumptions exist that in-depth study of intra-tumour environment might lead to formulation of new principles in tumour biology as well as introduction of new therapeutic strategies. Research into details of tumour microenvironment is needed to expand scientific knowledge as well as to, subsequently, define tumour biomarkers. Monitoring of these biomarkers will facilitate molecular diagnostics. Biomarkers will be widely used to monitor tumour growth as well as to monitor the process of treatment. Monitoring of combinations of biomarkers will enable more detailed characterisation of tumour microenvironment. These might include, apart from receptors, signal molecules, growth factors and molecules accelerating apoptosis, specific molecules as well as their combinations or neoangiogenesis or tumour innervation parameters. Tumour complexity involves not just intracellular environment but also intracellular relationships and associations between cells and extracellular tumour components. Detection of circulating tumour cells represents another parameter to be monitored. Low-molecular weight fluorescent dyes will very likely be used for their detection. It can be assumed that circulating tumour cells will be used as markers of prognosis as well as indicators of malignity progression and treatment. Scientific advances in this area will facilitate individualised therapy of patients suffering from cancers. The aim of the present review study was to analyze scientific knowledge from the perspective of acceptance of complexity and heterogeneity of each tumour. We perceived processing of the vast amounts of literature as meaningful with respect to recognition of new knowledge and theoretical preparation for expected changes in diagnostics and treatment of tumours. We believe that the presented findings are a useful step towards achievement of comprehensive insight into tumour microenvironment.

Keywords: angiogenesis; tumour innervation; tumour microenvironment; vagus nerve; anti-inflammatory effects of nervous system

Vloženo: 25. březen 2009; Přijato: 8. červenec 2009; Zveřejněno: 1. prosinec 2009  Zobrazit citaci

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Valášková Z, Kiňová S, Danihel Ľ, Ďuriš I, Markovičová D, Mravec B, Hulín I. Komplexita interakcií nádorového procesu. Vnitr Lek. 2009;55(12):1145-1158.
Stáhnout citaci

Reference

  1. Adam Z, Chlupová G, Tomášek J et al. Systémové a paraneoplastické projevy maligních onemocnění. Vnitř Lék 2007; 53: 253-285. Přejít na PubMed...
  2. Polyak K, Haviv I, Campbell IG. Co-evolution of tumor cells and their microenvironment. Trends Genet 2009; 25: 30-38. Přejít k původnímu zdroji... Přejít na PubMed...
  3. Olumi AF, Grossfeld GD, Hayward SW et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 1999; 59: 5002-5011. Přejít na PubMed...
  4. Hlávková D, Kopecký O, Lukešová Š. Zánětlivá reakce a její význam v průběhu nádorového procesu. Vnitř Lék 2008; 54: 821-826. Přejít na PubMed...
  5. Tlsty TD, Coussens LM. Tumor stroma and regulation of cancer development. Annu Rev Pathol 2006; 1: 119-150. Přejít k původnímu zdroji... Přejít na PubMed...
  6. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2: 161-174. Přejít k původnímu zdroji... Přejít na PubMed...
  7. Folgueras AR, Pendás AM, Sánchez LM et al. Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. Int J Dev Biol 2004; 48: 411-424. Přejít k původnímu zdroji... Přejít na PubMed...
  8. Houghton J, Morozov A, Smirnova I et al. Stem cells and cancer. Semin Cancer Biol 2007; 17: 191-203. Přejít k původnímu zdroji... Přejít na PubMed...
  9. Ailles LE, Weissman IL. Cancer stem cells in solid tumors. Curr Opin Biotechnol 2007; 18: 460-466. Přejít k původnímu zdroji... Přejít na PubMed...
  10. Marotta LL, Polyak K. Cancer stem cells: a model in the making. Curr Opin Genet Dev 2009; 19: 44-50. Přejít k původnímu zdroji... Přejít na PubMed...
  11. Wicha MS. Cancer stem cell heterogeneity in hereditary breast cancer. Breast Cancer Res 2008; 10: 105. Přejít k původnímu zdroji... Přejít na PubMed...
  12. Orimo A, Gupta PB, Sgroi DC et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005; 121: 335-348. Přejít k původnímu zdroji... Přejít na PubMed...
  13. Pagès F, Berger A, Camus M et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 2005; 353: 2654-2666. Přejít k původnímu zdroji... Přejít na PubMed...
  14. Galon J, Costes A, Sanchez-Cabo F et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006; 313: 1960-1964. Přejít k původnímu zdroji... Přejít na PubMed...
  15. Stewart TH, Heppner GH. Immunological enhancement of breast cancer. Parasitology 1997; 115: S141-S153. Přejít k původnímu zdroji... Přejít na PubMed...
  16. Nonomura N, Takayama H, Nishimura K et al. Decreased number of mast cells infiltrating into needle biopsy specimens leads to a better prognosis of prostate cancer. Br J Cancer 2007; 97: 952-956. Přejít k původnímu zdroji... Přejít na PubMed...
  17. Taskinen M, Karjalainen-Lindsberg ML, Leppä S. Prognostic influence of tumor-infiltrating mast cells in patients with follicular lymphoma treated with rituximab and CHOP. Blood 2008; 111: 4664-4667. Přejít k původnímu zdroji... Přejít na PubMed...
  18. Ben-Baruch A. Host microenvironment in breast cancer development: inflammatory cells, cytokines and chemokines in breast cancer progression: reciprocal tumor-microenvironment interactions. Breast Cancer Res 2003; 5: 31-36. Přejít k původnímu zdroji... Přejít na PubMed...
  19. Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene 2008; 27: 5904-5912. Přejít k původnímu zdroji... Přejít na PubMed...
  20. Gassmann P, Haier J. The tumor cell-host organ interface in the early onset of metastatic organ colonisation. Clin Exp Metastasis 2008; 25: 171-181. Přejít k původnímu zdroji... Přejít na PubMed...
  21. Coussens LM, Tinkle CL, Hanahan D et al. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 2000; 103: 481-490. Přejít k původnímu zdroji... Přejít na PubMed...
  22. Pekarek LA, Starr BA, Toledano AY et al. Inhibition of tumor growth by elimination of granulocytes. J Exp Med 1995; 181: 435-440. Přejít k původnímu zdroji... Přejít na PubMed...
  23. Wu QD, Wang JH, Condron C et al. Human neutrophils facilitate tumor cell transendothelial migration. Am J Physiol Cell Physiol 2001; 280: C814-C822. Přejít k původnímu zdroji... Přejít na PubMed...
  24. Schruefer R, Lutze N, Schymeinsky J et al. Human neutrophils promote angiogenesis by a paracrine feedforward mechanism involving endothelial interleukin-8. Am J Physiol Heart Circ Physiol 2005; 288: H1186-H1192. Přejít k původnímu zdroji... Přejít na PubMed...
  25. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420: 860-867. Přejít k původnímu zdroji... Přejít na PubMed...
  26. Crowther M, Brown NJ, Bishop ET et al. Microenvironmental influence on macrophage regulation of angiogenesis in wounds and malignant tumors. J Leukoc Biol 2001; 70: 478-490. Přejít k původnímu zdroji... Přejít na PubMed...
  27. Sato E, Olson SH, Ahn J et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 2005; 102: 18538-18543. Přejít k původnímu zdroji... Přejít na PubMed...
  28. Leffers N, Lambeck AJ, de Graeff P et al. Survival of ovarian cancer patients overexpressing the tumour antigen p53 is diminished in case of MHC class I down-regulation. Gynecol Oncol 2008; 110: 365-373. Přejít k původnímu zdroji... Přejít na PubMed...
  29. Yu P, Fu YX. Tumor-infiltrating T lymphocytes: friends or foes? Lab Invest 2006; 86: 231-245. Přejít k původnímu zdroji... Přejít na PubMed...
  30. Mantovani A, Romero P, Palucka AK et al. Tumour immunity: effector response to tumour and role of the microenvironment. Lancet 2008; 371: 771-783. Přejít k původnímu zdroji... Přejít na PubMed...
  31. Lukešová Š, Vroblová V, Hlávková D et al. Sledování protinádorové buněčné imunitní odpovědi u nemocných s renálním karcinomem, porucha proliferace T-lymfocytů. Vnitř Lék 2008; 54: 139-145. Přejít k původnímu zdroji... Přejít na PubMed...
  32. Wolf D, Wolf AM, Rumpold H et al. The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer. Clin Cancer Res 2005; 11: 8326-8331. Přejít k původnímu zdroji... Přejít na PubMed...
  33. O'Neill DW, Adams S, Bhardwaj N. Manipulating dendritic cell biology for the active immunotherapy of cancer. Blood 2004; 104: 2235-2246. Přejít k původnímu zdroji... Přejít na PubMed...
  34. Zou W, Machelon V, Coulomb-L'Hermin A et al. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 2001; 7: 1339-1346. Přejít k původnímu zdroji... Přejít na PubMed...
  35. Iwamoto M, Shinohara H, Miyamoto A et al. Prognostic value of tumor-infiltrating dendritic cells expressing CD83 in human breast carcinomas. Int J Cancer 2003; 104: 92-97. Přejít k původnímu zdroji... Přejít na PubMed...
  36. Freedman RS, Deavers M, Liu J et al. Peritoneal inflammation - a microenvironment for Epithelial Ovarian Cancer (EOC). J Transl Med 2004; 2: 23. Přejít k původnímu zdroji... Přejít na PubMed...
  37. Dhodapkar MV, Steinman RM, Krasovsky J et al. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 2001; 193: 233-238. Přejít k původnímu zdroji... Přejít na PubMed...
  38. Curiel TJ, Cheng P, Mottram P et al. Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res 2004; 64: 5535-5538. Přejít k původnímu zdroji... Přejít na PubMed...
  39. Pavoni E, Monteriù G, Santapaola D et al. Tumor-infiltrating B lymphocytes as an efficient source of highly specific immunoglobulins recognizing tumor cells. BMC Biotechnol 2007; 7: 70. Přejít k původnímu zdroji... Přejít na PubMed...
  40. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004; 21: 137-148. Přejít k původnímu zdroji... Přejít na PubMed...
  41. Beverley PC. The immunology of cancer. In: Knowles MA, Selby PJ (eds). Introduction to the Cellular and Molecular Biology of Cancer. New York: Oxford University Press 2005: 337-353. Přejít k původnímu zdroji...
  42. Girolomoni G, Ricciardi-Castagnoli P. Dendritic cells hold promise for immunotherapy. Immunol Today 1997; 18: 102-104. Přejít k původnímu zdroji... Přejít na PubMed...
  43. Cholujová D. Protinádorová imunita a imunoterapia - molekulárne ministerstvo obrany. 2007. Available from http://www.nvr.sk/buxus/generate_page.php?page_id=547.
  44. Gerhardt A, Usener D, Keese M et al. Tissue expression and sero-reactivity of tumor-specific antigens in colorectal cancer. Cancer Lett 2004; 208: 197-206. Přejít k původnímu zdroji... Přejít na PubMed...
  45. Eichmüller S, Usener D, Thiel D et al. Tumor-specific antigens in cutaneous T-cell lymphoma: expression and sero-reactivity. Int J Cancer 2003; 104: 482-487. Přejít k původnímu zdroji... Přejít na PubMed...
  46. Mittelman A, Lucchese A, Sinha AA et al. Monoclonal and polyclonal humoral immune response to EC HER-2/NEU peptides with low similarity to the host's proteome. Int J Cancer 2002; 98: 741-747. Přejít k původnímu zdroji... Přejít na PubMed...
  47. Taylor DD, Gercel-Taylor C. Tumor-reactive immunoglobulins in ovarian cancer: diagnostic and therapeutic significance? Oncol Rep 1998; 5: 1519-1524. Přejít k původnímu zdroji... Přejít na PubMed...
  48. Ostrand-Rosenberg S. Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev 2008; 18: 11-18. Přejít k původnímu zdroji... Přejít na PubMed...
  49. DeNardo DG, Coussens LM. Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res 2007; 9: 212. Přejít k původnímu zdroji... Přejít na PubMed...
  50. Drake CG, Jaffee E, Pardoll DM. Mechanisms of immune evasion by tumors. Adv Immunol 2006; 90: 51-81. Přejít k původnímu zdroji... Přejít na PubMed...
  51. Gilboa E. How tumors escape immune destruction and what we can do about it. Cancer Immunol Immunother 1999; 48: 382-385. Přejít k původnímu zdroji... Přejít na PubMed...
  52. Piancatelli D, Romano P, Sebastiani P et al. Local expression of cytokines in human colorectal carcinoma: evidence of specific interleukin-6 gene expression. J Immunother 1999; 22: 25-32. Přejít k původnímu zdroji... Přejít na PubMed...
  53. Mocellin S, Marincola FM, Young HA. Interleukin-10 and the immune response against cancer: a counterpoint. J Leukoc Biol 2005; 78: 1043-1051. Přejít k původnímu zdroji... Přejít na PubMed...
  54. Benelli R, Lorusso G, Albini A et al. Cytokines and chemokines as regulators of angiogenesis in health and disease. Curr Pharm Des 2006; 12: 3101-3115. Přejít k původnímu zdroji... Přejít na PubMed...
  55. Crivellato E, Ribatti D. Involvement of mast cells in angiogenesis and chronic inflammation. Curr Drug Targets Inflamm Allergy 2005; 4: 9-11. Přejít k původnímu zdroji... Přejít na PubMed...
  56. Burtin C, Ponvert C, Fray A et al. Inverse correlation between tumor incidence and tissue histamine levels in W/WV, WV/+, and +/+ mice. J Natl Cancer Inst 1985; 74: 671-674.
  57. Zhang W, Stoica G, Tasca SI et al. Modulation of tumor angiogenesis by stem cell factor. Cancer Res 2000; 60: 6757-6762.
  58. Crivellato E, Nico B, Ribatti D. Mast cells and tumour angiogenesis: new insight from experimental carcinogenesis. Cancer Lett 2008; 269: 1-6. Přejít k původnímu zdroji... Přejít na PubMed...
  59. Ribatti D, Marimpietri D, Pastorino F et al. Angiogenesis in neuroblastoma. Ann N Y Acad Sci 2004; 1028: 133-142. Přejít k původnímu zdroji... Přejít na PubMed...
  60. Di Girolamo N, Indoh I, Jackson N et al. Human mast cell-derived gelatinase B (matrix metalloproteinase-9) is regulated by inflammatory cytokines: role in cell migration. J Immunol 2006; 177: 2638-2650. Přejít k původnímu zdroji... Přejít na PubMed...
  61. Tuna B, Yorukoglu K, Unlu M et al. Association of mast cells with microvessel density in renal cell carcinomas. Eur Urol 2006; 50: 530-534. Přejít k původnímu zdroji... Přejít na PubMed...
  62. Nonomura N. Three successful cases of bilateral testicular tumors where the unilateral testis was preserved by three courses of BEP chemotherapy. Int J Urol 2007; 14: 882. Přejít k původnímu zdroji... Přejít na PubMed...
  63. Yano H, Kinuta M, Tateishi H et al. Mast cell infiltration around gastric cancer cells correlates with tumor angiogenesis and metastasis. Gastric Cancer 1999; 2: 26-32. Přejít k původnímu zdroji... Přejít na PubMed...
  64. Lachter J, Stein M, Lichtig C et al. Mast cells in colorectal neoplasias and premalignant disorders. Dis Colon Rectum 1995; 38: 290-293. Přejít k původnímu zdroji... Přejít na PubMed...
  65. Takanami I, Takeuchi K, Naruke M. Expression and prognostic value of the standard CD44 protein in pulmonary adenocarcinoma. Oncol Rep 2000; 7: 1065-1067. Přejít k původnímu zdroji... Přejít na PubMed...
  66. Gounaris E, Erdman SE, Restaino C et al. Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci USA 2007; 104: 19977-19982. Přejít k původnímu zdroji... Přejít na PubMed...
  67. Procházka V, Chlup R. Kolorektální karcinom a diabetes mellitus. Vnitř Lék 2008; 54: 979-984. Přejít na PubMed...
  68. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1: 27-31. Přejít k původnímu zdroji... Přejít na PubMed...
  69. McDonald DM, Choyke PL. Imaging of angiogenesis: from microscope to clinic. Nat Med 2003; 9: 713-725. Přejít k původnímu zdroji... Přejít na PubMed...
  70. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307: 58-62. Přejít k původnímu zdroji... Přejít na PubMed...
  71. Fukumura D, Jain RK. Imaging angiogenesis and the microenvironment. APMIS 2008; 116: 695-715. Přejít k původnímu zdroji... Přejít na PubMed...
  72. Hanahan D, Christofori G, Naik P et al. Transgenic mouse models of tumour angiogenesis: the angiogenic switch, its molecular controls, and prospects for preclinical therapeutic models. Eur J Cancer 1996; 32A: 2386-2393. Přejít k původnímu zdroji... Přejít na PubMed...
  73. Kerbel RS. Tumor angiogenesis. N Engl J Med 2008; 358: 2039-2049. Přejít k původnímu zdroji... Přejít na PubMed...
  74. Neufeld G, Kessler O. The semaphorins: versatile regulators of tumour progression and tumour angiogenesis. Nat Rev Cancer 2008; 8: 632-645. Přejít k původnímu zdroji... Přejít na PubMed...
  75. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353-364. Přejít k původnímu zdroji... Přejít na PubMed...
  76. Ferrara N. VEGF as a therapeutic target in cancer. Oncology 2005; 69 (Suppl 3): 11-16. Přejít k původnímu zdroji... Přejít na PubMed...
  77. Shibuya M. Structure and dual function of vascular endothelial growth factor receptor-1 (Flt-1). Int J Biochem Cell Biol 2001; 33: 409-420. Přejít k původnímu zdroji... Přejít na PubMed...
  78. Semenza G. Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol 2002; 64: 993-998. Přejít k původnímu zdroji... Přejít na PubMed...
  79. Pouysségur J, Mechta-Grigoriou F. Redox regulation of the hypoxia-inducible factor. Biol Chem 2006; 387: 1337-1346. Přejít k původnímu zdroji... Přejít na PubMed...
  80. Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell 2007; 129: 465-472. Přejít k původnímu zdroji... Přejít na PubMed...
  81. Rüegg C. Leukocytes, inflammation, and angiogenesis in cancer: fatal attractions. J Leukoc Biol 2006; 80: 682-684. Přejít k původnímu zdroji... Přejít na PubMed...
  82. Noonan DM, De Lerma Barbaro A, Vannini N et al. Inflammation, inflammatory cells and angiogenesis: decisions and indecisions. Cancer Metastasis Rev 2008; 27: 31-40. Přejít k původnímu zdroji... Přejít na PubMed...
  83. Tsirlis TD, Papastratis G, Masselou K et al. Circulating lymphangiogenic growth factors in gastrointestinal solid tumors, could they be of any clinical significance? World J Gastroenterol 2008; 14: 2691-2701. Přejít k původnímu zdroji... Přejít na PubMed...
  84. Ji RC. Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: New insights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev 2006; 25: 677-694. Přejít k původnímu zdroji... Přejít na PubMed...
  85. Kerjaschki D, Huttary N, Raab I et al. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med 2006; 12: 230-234. Přejít k původnímu zdroji... Přejít na PubMed...
  86. Garmy-Susini B, Makale M, Fuster M et al. Methods to study lymphatic vessel integrins. Methods Enzymol 2007; 426: 415-438. Přejít k původnímu zdroji... Přejít na PubMed...
  87. Huang XZ, Wu JF, Ferrando R et al. Fatal bilateral chylothorax in mice lacking the integrin alpha9beta1. Mol Cell Biol 2000; 20: 5208-5215. Přejít k původnímu zdroji... Přejít na PubMed...
  88. Ji RC. Lymphatic endothelial cells, inflammatory lymphangiogenesis, and prospective players. Curr Med Chem 2007; 14: 2359-2368. Přejít k původnímu zdroji... Přejít na PubMed...
  89. Das S, Skobe M. Lymphatic vessel activation in cancer. Ann NY Acad Sci 2008; 1131: 235-241. Přejít k původnímu zdroji... Přejít na PubMed...
  90. Cao Y. Why and how do tumors stimulate lymphangiogenesis? Lymphat Res Biol 2008; 6: 145-148. Přejít k původnímu zdroji... Přejít na PubMed...
  91. Tracey KJ. The inflammatory reflex. Nature 2002; 420: 853-859. Přejít k původnímu zdroji... Přejít na PubMed...
  92. Mravec B. Neurobiológia chorôb periférnych tkanív. Bratislava: SAP 2008.
  93. Godbout JP, Johnson RW. Age and neuroinflammation: a lifetime of psychoneuroimmune consequences. Neurol Clin 2006; 24: 521-538. Přejít k původnímu zdroji... Přejít na PubMed...
  94. Pavlov VA, Wang H, Czura CJ et al. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med 2003; 9: 125-134. Přejít k původnímu zdroji...
  95. Blatteis CM. The afferent signalling of fever. J Physiol 2000; 526: 470. Přejít na PubMed...
  96. Silverman MN, Pearce BD, Biron CA et al. Immune modulation of the hypothalamic-pituitary-adrenal (HPA) axis during viral infection. Viral Immunol 2005; 18: 41-78. Přejít k původnímu zdroji... Přejít na PubMed...
  97. Sternberg EM. Neural-immune interactions in health and disease. J Clin Invest 1997; 100: 2641-2647. Přejít k původnímu zdroji... Přejít na PubMed...
  98. Goehler LE, Gaykema RP, Nguyen KT et al. Interleukin-1beta in immune cells of the abdominal vagus nerve: a link between the immune and nervous systems? J Neurosci 1999; 19: 2799-2806. Přejít k původnímu zdroji... Přejít na PubMed...
  99. Czura CJ, Tracey KJ. Autonomic neural regulation of immunity. J Intern Med 2005; 257: 156-166. Přejít k původnímu zdroji... Přejít na PubMed...
  100. Pavlov VA, Tracey KJ. Neural regulators of innate immune responses and inflammation. Cell Mol Life Sci 2004; 61: 2322-2331. Přejít k původnímu zdroji... Přejít na PubMed...
  101. Quan N, Banks WA. Brain-immune communication pathways. Brain Behav Immun 2007; 21: 727-735. Přejít k původnímu zdroji... Přejít na PubMed...
  102. Wang H, Yu M, Ochani M et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 2003; 421: 384-388. Přejít k původnímu zdroji... Přejít na PubMed...
  103. De Jonge WJ, van der Zanden EP, The FO et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol 2005; 6: 844-851. Přejít k původnímu zdroji... Přejít na PubMed...
  104. Gallowitsch-Puerta M, Pavlov VA. Neuro-immune interactions via the cholinergic antiinflammatory pathway. Life Sci 2007; 80: 2325-2329. Přejít k původnímu zdroji... Přejít na PubMed...
  105. Oke SL, Tracey KJ. From CNI-1493 to the immunological homunculus: physiology of the inflammatory reflex. J Leukoc Biol 2008; 83: 512-517. Přejít k původnímu zdroji... Přejít na PubMed...
  106. Bernik TR, Friedman SG, Ochani M et al. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med 2002; 195: 781-788. Přejít k původnímu zdroji... Přejít na PubMed...
  107. Bernik TR, Friedman SG, Ochani M et al. Cholinergic antiinflammatory pathway inhibition of tumor necrosis factor during ischemia reperfusion. J Vasc Surg 2002; 36: 1231-1236. Přejít k původnímu zdroji... Přejít na PubMed...
  108. Andersson J. The inflammatory reflex - introduction. J Intern Med 2005; 257: 122-125. Přejít k původnímu zdroji... Přejít na PubMed...
  109. Mravec B, Hulin I. Does vagus nerve constitute a self-organization complexity or a "hidden network"? Bratisl Lek Listy 2006; 107: 3-8. Přejít na PubMed...
  110. Mravec B, Gidron Y, Kukanova B et al. Neural-endocrine-immune complex in the central modulation of tumorigenesis: facts, assumptions, and hypotheses. J Neuroimmunol 2006; 180: 104-116. Přejít k původnímu zdroji... Přejít na PubMed...
  111. Paleari L, Grozio A, Cesario A et al. The cholinergic system and cancer. Semin Cancer Biol 2008; 18: 211-217. Přejít k původnímu zdroji... Přejít na PubMed...
  112. Nance DM, Sanders VM. Autonomic innervation and regulation of the immune system (1987-2007). Brain Behav Immun 2007; 21: 736-745. Přejít k původnímu zdroji... Přejít na PubMed...
  113. Elenkov IJ, Wilder RL, Chrousos GP et al. The sympathetic nerve: an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 2000; 52: 595-638. Přejít na PubMed...
  114. Pongratz G, McAlees JW, Conrad DH et al. The level of IgE produced by a B cell is regulated by norepinephrine in a p38 MAPK- and CD23-dependent manner. J Immunol 2006; 177: 2926-2938. Přejít k původnímu zdroji... Přejít na PubMed...
  115. Madden KS, Olschowka JA, Livnat S. Noradrenergic sympathetic innervation of lymphoid organs. Prog Allergy 1988; 43: 14-36. Přejít k původnímu zdroji...
  116. Madden KS, Sanders VM, Felten DL. Catecholamine influences and sympathetic neural modulation of immune responsiveness. Annu Rev Pharmacol Toxicol 1995; 35: 417-448. Přejít k původnímu zdroji... Přejít na PubMed...
  117. Shakhar G, Ben-Eliyahu S. In vivo beta-adrenergic stimulation suppresses natural killer activity and compromises resistance to tumor metastasis in rats. J Immunol 1998; 160: 3251-3258. Přejít k původnímu zdroji...
  118. Lang K, Drell TL, Niggemann B et al. Neurotransmitters regulate the migration and cytotoxicity in natural killer cells. Immunol Lett 2003; 90: 165-172. Přejít k původnímu zdroji... Přejít na PubMed...
  119. Sternberg EM. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol 2006; 6: 318-328. Přejít k původnímu zdroji... Přejít na PubMed...
  120. Bellinger DL, Millar BA, Perez S et al. Sympathetic modulation of immunity: relevance to disease. Cell Immunol 2008; 252: 27-56. Přejít k původnímu zdroji... Přejít na PubMed...
  121. Haug SR, Heyeraas KJ. Modulation of dental inflammation by the sympathetic nervous system. J Dent Res 2006; 85: 488-495. Přejít k původnímu zdroji... Přejít na PubMed...
  122. Seifert P, Spitznas M. Tumours may be innervated. Virchows Arch 2001; 438: 228-231. Přejít k původnímu zdroji... Přejít na PubMed...
  123. Shapiro DM, Warren S. Cancer innervation. Cancer Res 1949; 9: 707-711.
  124. Li Q, Johansson H, Kjellman M et al. Neuroendocrine differentiation and nerves in human adrenal cortex and cortical lesions. APMIS 1998; 106: 807-817. Přejít k původnímu zdroji... Přejít na PubMed...
  125. Schwei MJ, Honore P, Rogers SD et al. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci 1999; 19: 10886-10897. Přejít k původnímu zdroji... Přejít na PubMed...
  126. Seifert P, Spitznas M. Axons in human choroidal melanoma suggest the participation of nerves in the control of these tumors. Am J Ophthalmol 2002; 133: 711-713. Přejít k původnímu zdroji... Přejít na PubMed...
  127. Entschladen F, Palm D, Lang K et al. Neoneurogenesis: tumors may initiate their own innervation by the release of neurotrophic factors in analogy to lymphangiogenesis and neoangiogenesis. Med Hypotheses 2006; 67: 33-35. Přejít k původnímu zdroji... Přejít na PubMed...
  128. Entschladen F, Palm D, Niggemann B et al. The cancer's nervous tooth: Considering the neuronal crosstalk within tumors. Semin Cancer Biol 2008; 18: 171-175. Přejít k původnímu zdroji... Přejít na PubMed...
  129. Nicol MR, Cobb VJ, Williams BC et al. Vasoactive intestinal peptide (VIP) stimulates cortisol secretion from the H295 human adrenocortical tumour cell line via VPAC1 receptors. J Mol Endocrinol 2004; 32: 869-877. Přejít k původnímu zdroji... Přejít na PubMed...
  130. Groneberg DA, Folkerts G, Peiser C et al. Neuropeptide Y (NPY). Pulm Pharmacol Ther 2004; 17: 173-180. Přejít k původnímu zdroji... Přejít na PubMed...
  131. Raju B, Haug SR, Ibrahim SO et al. Sympathectomy decreases size and invasiveness of tongue cancer in rats. Neuroscience 2007; 149: 715-725. Přejít k původnímu zdroji... Přejít na PubMed...
  132. Gidron Y, Perry H, Glennie M. Does the vagus nerve inform the brain about preclinical tumours and modulate them? Lancet Oncol 2005; 6: 245-248. Přejít k původnímu zdroji... Přejít na PubMed...
  133. Mravec B, Ondicova K, Valaskova Z et al. Neurobiological principles in the etiopathogenesis of disease: when diseases have a head. Med Sci Monit 2009; 15: RA6-RA16.
  134. Lang K, Bastian P. Neurotransmitter effects on tumor cells and leukocytes. Prog Exp Tumor Res 2007; 39: 99-121. Přejít k původnímu zdroji... Přejít na PubMed...
  135. Drell TL 4th, Joseph J, Lang K et al. Effects of neurotransmitters on the chemokinesis and chemotaxis of MDA-MB-468 human breast carcinoma cells. Breast Cancer Res Treat 2003; 80: 63-70. Přejít k původnímu zdroji... Přejít na PubMed...
  136. Entschladen F, Drell TL 4th, Lang K et al. Neurotransmitters and chemokines regulate tumor cell migration: potential for a new pharmacological approach to inhibit invasion and metastasis development. Curr Pharm Des 2005; 11: 403-411. Přejít k původnímu zdroji... Přejít na PubMed...
  137. Sanae F, Miyamoto K, Koshiura R. Altered adrenergic response and specificity of the receptors in rat ascites hepatoma AH130. Cancer Res 1989; 49: 6242-6246. Přejít na PubMed...
  138. Lang K, Drell TL 4th, Lindecke A et al. Induction of a metastatogenic tumor cell type by neurotransmitters and its pharmacological inhibition by established drugs. Int J Cancer 2004; 112: 231-238. Přejít k původnímu zdroji... Přejít na PubMed...
  139. Masur K, Niggemann B, Zanker KS et al. Norepinephrine-induced migration of SW 480 colon carcinoma cells is inhibited by beta-blockers. Cancer Res 2001; 61: 2866-2869.
  140. Palm D, Lang K, Niggemann B et al. The norepinephrine-driven metastasis development of PC-3 human prostate cancer cells in BALB/c nude mice is inhibited by beta-blockers. Int J Cancer 2006; 118: 2744-2749. Přejít k původnímu zdroji... Přejít na PubMed...
  141. Thaker PH, Sood AK. Neuroendocrine influences on cancer biology. Semin Cancer Biol 2008; 18: 164-170. Přejít k původnímu zdroji... Přejít na PubMed...
  142. Goldfarb Y, Ben-Eliyahu S. Surgery as a risk factor for breast cancer recurrence and metastasis: mediating mechanisms and clinical prophylactic approaches. Breast Dis 2006-2007; 26: 99-114. Přejít k původnímu zdroji... Přejít na PubMed...
  143. Kiecolt-Glaser JK, Robles TF, Heffner KL et al. Psychooncology and cancer: psychoneuroimmunology and cancer. Ann Oncol 2002; 13: 165-169. Přejít k původnímu zdroji... Přejít na PubMed...
  144. Yang EV, Sood AK, Chen M et al. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res 2006; 66: 10357-10364. Přejít k původnímu zdroji... Přejít na PubMed...
  145. Yang EV, Kim SJ, Donovan EL et al. Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: implications for stress-related enhancement of tumor progression. Brain Behav Immun 2009; 23: 267-275. Přejít k původnímu zdroji... Přejít na PubMed...
  146. Körner M, Reubi JC. NPY receptors in human cancer: a review of current knowledge. Peptides 2007; 28: 419-425. Přejít k původnímu zdroji... Přejít na PubMed...
  147. Williams CL. Muscarinic signaling in carcinoma cells. Life Sci 2003; 72: 2173-2182. Přejít k původnímu zdroji... Přejít na PubMed...
  148. Song P, Sekhon HS, Lu A et al. M3 muscarinic receptor antagonists inhibit small cell lung carcinoma growth and mitogen-activated protein kinase phosphorylation induced by acetylcholine secretion. Cancer Res 2007; 67: 3936-3944. Přejít k původnímu zdroji... Přejít na PubMed...
  149. Schuller HM. Neurotransmitter receptor-mediated signaling pathways as modulators of carcinogenesis. Prog Exp Tumor Res 2007; 39: 45-63. Přejít k původnímu zdroji... Přejít na PubMed...
  150. Plummer HK 3rd, Dhar MS, Cekanova M et al. Expression of G-protein inwardly rectifying potassium channels (GIRKs) in lung cancer cell lines. BMC Cancer 2005; 5: 104. Přejít k původnímu zdroji... Přejít na PubMed...
  151. Kinova S, Duris I, Kovacova E et al. Malignant carcinoid in two brothers. Bratisl Lek Listy 2001; 102: 231-234. Přejít na PubMed...
  152. Lang K, Entschladen F, Weidt C et al. Tumor immune escape mechanisms: impact of the neuroendocrine system. Cancer Immunol Immunother 2006; 55: 749-760. Přejít k původnímu zdroji... Přejít na PubMed...
  153. Entschladen F, Palm D, Drell TL 4th et al. Connecting a tumor to the environment. Curr Pharm Des 2007; 13: 3440-3444. Přejít k původnímu zdroji...
  154. Soltanghoraiee H, Zavarehii MJ, Broomand MA. Comparison between number of nerve fibers in normal breast tissue, benign lesions and malignant breast tumors. Acta Medica Iranica 2004; 42: 355-358.
  155. Mravec B, Lackovicova L, Pirnik Z et al. Brain response to induced peripheral cancer development in rats: dual fos-tyrosine hydroxylase and fos-oxytocin immunohistochemistry. Endocr Regul 2009; 43: 3-11. Přejít k původnímu zdroji... Přejít na PubMed...
  156. Pirnik Z, Bundzikova J, Bizik J et al. Activity of brainstem groups of catecholaminergic cells in tumor bearing rats: response to immobilization stress. Ann NY Acad Sci 2008; 1148: 141-147. Přejít k původnímu zdroji... Přejít na PubMed...




Vnitřní lékařství

Vážená paní, pane,
upozorňujeme Vás, že webové stránky, na které hodláte vstoupit, nejsou určeny široké veřejnosti, neboť obsahují odborné informace o léčivých přípravcích, včetně reklamních sdělení, vztahující se k léčivým přípravkům. Tyto informace a sdělení jsou určena výhradně odborníkům dle §2a zákona č.40/1995 Sb., tedy osobám oprávněným léčivé přípravky předepisovat nebo vydávat (dále jen odborník).
Vezměte v potaz, že nejste-li odborník, vystavujete se riziku ohrožení svého zdraví, popřípadě i zdraví dalších osob, pokud byste získané informace nesprávně pochopil(a) či interpretoval(a), a to zejména reklamní sdělení, která mohou být součástí těchto stránek, či je využil(a) pro stanovení vlastní diagnózy nebo léčebného postupu, ať už ve vztahu k sobě osobně nebo ve vztahu k dalším osobám.

Prohlašuji:

  1. že jsem se s výše uvedeným poučením seznámil(a),
  2. že jsem odborníkem ve smyslu zákona č.40/1995 Sb. o regulaci reklamy v platném znění a jsem si vědom(a) rizik, kterým by se jiná osoba než odborník vstupem na tyto stránky vystavovala.


Ne

Ano

Pokud vaše prohlášení není pravdivé, upozorňujeme Vás,
že se vystavujete riziku ohrožení svého zdraví, popřípadě i zdraví dalších osob.