Vnitr Lek 2009, 55(2):97-104
Pathophysiology of metabolic acidosis in patients with reduced glomerular filtration rate according to Stewart-Fencl theory
- 1 Interní klinika 2. lékařské fakulty UK a FN Motol Praha, přednosta prof. MUDr. Milan Kvapil, CSc., MBA
- 2 Ústav klinické biochemie a patobiochemie 2. lékařské fakulty UK a FN Motol Praha, přednosta prof. MUDr. Richard Průša, CSc.
Aim:
Metabolic acidosis is a regular sign of renal insufficiency. Conventional assessment of acid-base balance using Henderson-Hasselbalch equation does not make identification of the cause of metabolic disorders possible as the serum HCO3- concentration might only reflect changes to the overall plasma ion spectrum. Therefore, we used the Stewart-Fencl approach that is based on a more detailed physical and chemical analysis and that showed that changes to serum HCO3- concentration are closely related to parameters not usually monitored in connection to acid-base balance.
Patient group and methodology:
We performed a single measurement of arterial or capillary blood pH and pCO2 in 69 non-dialysed patients with glomerular filtration rate ranging from 0.04 to 0.88 ml/s/1.73 m2 according to MDRD, standard calculation of serum HCO3- concentration using Henderson-Hasselbalch equation was carried out, and serum albumin and ion concentrations (Na+, K+, Cl, Pi) plus creatinine and urea concentrations were determined from venous blood.
Results:
Metabolic acidosis was present in 47 patients ([S-HCO3-] < 22 mmol/l) with the mean [S-HCO3-] value of 19.6 mmol/l for the entire group. We proved a statistically significant correlation between [S-HCO3-] and [SID] (p < 0.001), and between [S-HCO3-] and the individual [SID] determining factors: [Na+-Cl-], [UA-], [Pi-], [K+] (p < 0.01).
Conclusion:
Reduction in [S-HCO3-] in non-dialysed patients with reduced glomerular filtration is predominantly associated with a decrease in [Na+-Cl-] difference, the quantitative contribution of which to metabolic acidosis is more significant than the strong acids retention. In addition to [S-Cl-] increase, [S-Na+] reduction too has a major role in reducing the [Na+-Cl-] difference.
Keywords: renal insufficiency; metabolic acidosis; Stewart theory; strong ion difference; unidentified anions; [Na+-Cl-] difference
Received: April 29, 2008; Accepted: November 20, 2008; Published: February 1, 2009 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Kraut JA, Kurtz I. Metabolic acidosis of CKD: diagnosis, clinical characteristics and treatment. Am J Kidney Dis 2005; 45: 978-993.
Go to original source...
Go to PubMed...
- Wallia R, Greenberg A, Piraino B et al. Serum electrolyte patterns in end-stage renal disease. Am J Kidney Dis 1986; 8: 98-104.
Go to original source...
Go to PubMed...
- Hakim RM, Lazarus JM. Biochemical parameters in chronic renal failure. Am J Kidney Dis 1988; 11: 238-247.
Go to original source...
Go to PubMed...
- Stewart PA. Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 1983; 61: 1444-1461.
Go to original source...
Go to PubMed...
- Fencl V, Leith DE. Stewart's quantitative acid-base chemistry: Applications in biology and medicine. Respir Physiol 1993; 91: 1-16.
Go to original source...
Go to PubMed...
- Jones NL. A quantitative physicochemical approach to acid-base physiology. Clin Biochem 1990; 23: 89-95.
Go to original source...
Go to PubMed...
- Corey HE. Stewart and beyond: New models of acid-base balance. Kidney Int 2003; 64: 777-787.
Go to original source...
Go to PubMed...
- Boyle M, Baldwin I. Introduction to an alternative view of acid-base balance: the strong ion difference or Stewart approach. Aust Crit Care 2002; 15: 14-20.
Go to original source...
- Matoušovic K, Martínek V, Kvapil M. Acidobazická rovnováha tělesných tekutin a její kvantitaivní fyzikálně-chemické hodnocení. Aktuality v nefrologii 2002; 4: 150-156.
- Schück O, Matoušovic K. Vztah mezi pH a diferencí silných iontů (SID) ve vnitřním prostředí. Klin Biochem Metab 2005; 34: 32-35.
- Matoušovic K, Martínek V. Analýza a korekce poruch acidobazické rovnováhy na základě Stewartova-Fenclova principu. Vnitř Lék 2004; 7: 526-530.
- Rosival V. Explanation of the Stewart-Fencl views on the acid-base equilibrium. Vnitř Lék 2004; 11: 877.
- Schück O, Teplan V, Marečková O. MDRD formulas for GFR estimation. Is there any difference among them in prediction of renal inulin clearance? Clin Nephrol 2005; 64: 326-327.
Go to original source...
Go to PubMed...
- Figge J, Jabor A, Kazda A et al. Anion gap and hypoalbuminemia. Crit Care Med 1998; 26: 1807-1810.
Go to original source...
Go to PubMed...
- Wilkes P. Hypoproteinemia, strong ion difference, and acid-base status in critically ill patients. J Appl Physiol 1998; 5: 1740-1748.
Go to original source...
Go to PubMed...
- Figge J, Mydosh T, Fencl V. Serum proteins and acid-base equilibria a follow up. J Lab Clin Med 1992; 120: 713-719.
- Figge J, Rossing TH, Fencl V. The role of serum proteins in acid-base equilibria. J Lab Clin Med 1991; 117: 453-467.
- Corey HE. The anion gap (AG): studies in the nephrotic syndrome and diabetic ketoacidosis (DKA). J Lab Clin Med 2006; 147: 121-125.
Go to original source...
Go to PubMed...
- McAuliffe JJ, Lind LJ, Leith DE et al. Hypoproteinemic alkalosis. Am J Med 1986; 81: 86-90.
Go to original source...
Go to PubMed...
- Story DA, Tosolini A, Bellmo R et al. Plasma acid-base changes in chronic renal failure: A Stewart analysis. Int J Art Org 2005; 28: 961-965.
Go to original source...
Go to PubMed...