Vnitr Lek 2026, 72(1):60-66 | DOI: 10.36290/vnl.2026.009
Umělá inteligence v kardiologii: současné klinické aplikace a regulatorní rámec v EU
- Kardiovaskulární oddělení, Interní a kardiologická klinika, Fakultní nemocnice Ostrava
Umělá inteligence (AI) se v posledních letech stává standardní součástí moderní kardiologie a zasahuje do diagnostiky, intervenční léčby i následného sledování pacientů. Nejrychleji se prosazuje v oblastech, kde je k dispozici velký objem strukturovaných signálů nebo obrazových dat, zejména v analýze EKG, dlouhodobém ambulantním monitorování rytmu, podpůrných systémech pro elektrofyziologické výkony a v kardiovaskulárních aplikacích výpočetní tomografie. Zároveň se rozvíjejí systémy pro urgentní triáž kritických nálezů na CT/CTA (Computed Tomography Angiography) a řešení podporující standardizované provedení echokardiografie i méně zkušenými uživateli. Článek shrnuje vybraná medicínská zařízení využívající AI s deklarovanou shodou podle MDR 2017/745 a zasazuje jejich použití do kontextu postupně nabíhajících povinností dle AI Act 2024/1689, který doplňuje MDR o specifické požadavky pro vysoce rizikové AI systémy. U jednotlivých technologií je diskutován princip, dostupná klinická validace a praktický dopad na klinické workflow. Klíčovou otázkou pro rutinní praxi zůstává kvalita vstupních dat, interpretovatelnost výstupů, interoperabilita a přenositelnost validace mezi populacemi a zdravotnickými systémy. Přestože u části nástrojů již existují randomizované či prospektivní multicentrické důkazy, u jiných je důkazní báze založena převážně na validačních a implementačních studiích a bude vyžadovat další potvrzení v dlouhodobých klinických endpointových studiích.
Klíčová slova: umělá inteligence, kardiologie, EKG, fibrilace síní, elektrofyziologie, CT angiografie, MDR 2017/745, AI Act 2024/1689.
Artificial intelligence in cardiology: Current clinical applications and regulatory framework in the EU
In recent years, artificial intelligence (AI) has become a standard part of modern cardiology, influencing diagnostics, interventional treatment, and patient follow-up. It is gaining ground most rapidly in areas with large volumes of structured signals or imaging data, particularly in ECG analysis, long-term ambulatory rhythm monitoring, support systems for electrophysiological procedures, and cardiovascular applications of computed tomography. At the same time, systems are being developed for the urgent triage of critical findings on CT/CTA (Computed Tomography Angiography) scans and tools that support standardized echocardiographic examinations even by less experienced users. This article summarizes selected AI-based medical devices that have declared conformity with the MDR 2017/745 and places their use in the context of the gradually introduced obligations under the AI Act 2024/1689, which supplements the MDR with specific requirements for high-risk AI systems. For each technology, the principle, available clinical validation, and practical impact on clinical workflow are discussed. Key issues for routine practice remain the quality of input data, interpretability of outputs, interoperability, and transferability of validation across populations and healthcare systems. While some tools are already supported by randomized or prospective multicenter evidence, others rely mainly on validation and implementation studies and will require further confirmation in long-term clinical endpoint trials.
Keywords: artificial intelligence, cardiology, ECG, atrial fibrillation, electrophysiology, CT angiography, MDR 2017/745, AI Act 2024/1689.
Přijato: 3. únor 2026; Zveřejněno: 12. únor 2026 Zobrazit citaci
Reference
- data.europa.eu. http://data.europa.eu/. [Online] 13. 52024. [Citace: 20. 82025.] http://data.europa.eu/eli/reg/2024/1689/oj.
- eur-lex.europa.eu. [Online] 5. 42017. [Citace: 19. 82025.] https://eur-lex.europa.eu/eli/reg/2017/745/oj/eng.
- powerfulmedical.com. [Online] [Citace: 25. 92025.] https://www.powerfulmedical.com/research/.
- Diagnostic accuracy of a smartphone application for artificial intelligence-based interpretation of 12-lead ECG in primary care (AMSTELHEART-1). J C L Himmelreich, R E Harskamp. 2, místo neznámé : European Heart Journal, 2023, Sv. 44.
Přejít k původnímu zdroji... - International evaluation of an artificial intelligence-powered electrocardiogram model detecting acute coronary occlusion myocardial infarction. Robert Herman, Harvey Pendell Meyers, Stephen W Smith et. al. 2, místo neznámé : European Heart Journal - Digital Health, 2024, Sv. 5. https://doi.org/10.1093/ehjdh/ztad074.
Přejít k původnímu zdroji...
Přejít na PubMed... - AI-Powered Smartphone Application for Detection of Left Ventricular Systolic Dysfunction using 12-Lead ECG. Anthony Demolder, MD, MSc, PhD, Robert Herman, MD, Boris Vavrik, MSc et al. 1, místo neznámé: Circulation, 2024, Sv. 150. https://doi.org/10.1161/circ.150.suppl_1.4141318.
Přejít k původnímu zdroji... - https://cardiomatics.com. [Online] [Citace: 26. 92025.] https://cardiomatics.com/clinical-evidence-2024/.
- Assessment of the atrial fibrillation burden in Holter electrocardiogram recordings using artificial intelligence. Hennings E, Coslovsky M, Paladini RE, et al. 4, místo neznámé : Cardiovasc Digit Health J, 2023, Sv. 27. doi: 10.1016/j.cvdhj.2023. 01. 003.
Přejít k původnímu zdroji... - www.irhythmtech.com. [Online] [Citace: 26. 92025.] https://www.irhythmtech.com/us/en/healthcare-professionals/clinical-resource-center.
- Comparative effectiveness and healthcare utilization for ambulatory cardiac monitoring strategies in Medicare beneficiaries. Matthew R. Reynolds, Rod Passman, Jason Swindle, et. al. místo neznámé: American Heart Journal, 2024, Sv. 269. https://doi.org/10.1016/j.ahj.2023. 12. 002.
Přejít k původnímu zdroji...
Přejít na PubMed... - https://www.idoven.ai. Idoven. [Online] [Citace: 2027. 92025.] https://www.idoven.ai/platform.
- Enhanced detection of atrial fibrillation in single-lead electrocardiograms using a Cloud-based artificial intelligence platform. De Guio F, Rienstra M, Lillo-Castellano JM, et al. 7, místo neznámé: Heart Rhythm, 2025, Sv. 22. doi: 10.1016/j.hrthm.2024. 12. 048.
Přejít k původnímu zdroji...
Přejít na PubMed... - Artificial intelligence cloud platform improves arrhythmia detection from insertable cardiac monitors to 25 cardiac rhythm patterns through multi-label classification. Quartieri F, Marina-Breysse M, Toribio-Fernandez R, et al. místo neznámé : Journal of Electrocardiology, 2023, Sv. 81. doi: 10.1016/j.jelectrocard.2023. 07. 001.
Přejít k původnímu zdroji...
Přejít na PubMed... - volta-medical. https://www.volta-medical.us. [Online] https://www.volta-medical.us/volta-af-xplorer.
- Artificial intelligence for individualized treatment of persistent atrial fibrillation: a randomized controlled trial. Deisenhofer, I., Albenque, JP., Busch, S. et al. místo neznámé : Nat Med 31, 1286-1293, 2025.
Přejít k původnímu zdroji...
Přejít na PubMed... - AF Ablation Guided by Spatiotemporal Electrogram Dispersion Without Pulmonary Vein Isolation: A Wholly Patient-Tailored Approach. Julien Seitz, MD a Clément Bars, MD, Guillaume Théodore, MD et al. 3, místo neznámé : JACC journal, 2017, Sv. 69.
Přejít k původnímu zdroji... - Artificial intelligence software standardizes electrogram-based ablation outcome for persistent atrial fibrillation. Julien Seitz MD, Théophile Mohr Durdez MSc, Jean P. Albenque MD, et al. 111, místo neznámé : Journal of Cardiovascular Electrohysiology, 2022, Sv. 33.
Přejít k původnímu zdroji... - inheartmedical.com. [Online] [Citace: 25. 92025.] https://www.inheartmedical.com/about.
- inHEART Models software - novel 3D cardiac modeling solution. John LA, Tomashitis B, Gowani Z, et al. 10, místo neznámé: Expert Rev Med Devices, 2023, Sv. 20. DOI: 10.1080/17434440.2023.2247983.
Přejít k původnímu zdroji...
Přejít na PubMed... - [Online] https://www.gehealthcare.co.uk/. [Citace: 28. 92025.] https://www.gehealthcare.co.uk/products/computed-tomography/revolution-family/ecg-less-cardiac-ct.
- Coronary computed tomography angiography without ECG leads; A feasibility study. Brian Thomsen, Ali Nabipoor, Sanaz Asadian, et al. místo neznámé: Current Problems in Diagnostic Radiology, 2025. DOI: 10.1067/j.cpradiol.2025. 04. 019.
Přejít k původnímu zdroji... - Comparing image quality of coronary CT angiography with and without ECG-gating in wide-detector CT. Kun Wang, Yueqiao Zhang, Bin Chen, et al. místo neznámé : Front Cardiovasc Med., 2025. doi: 10.3389/fcvm.2025.1570743.
Přejít k původnímu zdroji...
Přejít na PubMed... - Usefulness of second-generation motion correction algorithm in improving delineation and reducing motion artifact of coronary computed tomography angiography. Shintaro Yamaguchi, Yasutaka Ichikawa, Masafumi Takafuji, et al. 3, místo neznámé : Journal of Cardiovascular Computed Tomography, 2024, Sv. 18. https://doi.org/10.1016/j.jcct.2024. 02. 008.
Přejít k původnímu zdroji...
Přejít na PubMed... - https://avicenna.ai. [Online] [Citace: 9. 282025.] https://avicenna.ai/medical-device-regulation/.
- Deep Learning-Based Algorithm for Automatic Detection of Pulmonary Embolism in Chest CT Angiograms. Grenier, P. A., Ayobi, A., Quenet, S., et al. 7, místo neznámé : Diagnostics, 2023, Sv. 13. https://doi.org/10.3390/diagnostics13071324.
Přejít k původnímu zdroji...
Přejít na PubMed... - Performance and clinical utility of an artificial intelligence-enabled tool for pulmonary embolism detection. Angela Ayobia, Peter D. Changb, Daniel S. Chowb, et al. místo neznámé : Clinical Imaging, 2024, Sv. 113.
Přejít k původnímu zdroji... - Performance Evaluation of an Artificial Intelligence (AI)-based Algorithm for Incidental Findings of Pulmonary Embolism. A. Ayobi, J. Schlossman, S. Salehi et. al. místo neznámé : American Journal of Respiratory and Critical Care Medicine, 2024, Sv. 209. https://doi.org/10.1164/ajrccm-conference.2024.209.1_MeetingAbstracts.A5074.
Přejít k původnímu zdroji... - Contribution of an Artificial Intelligence Tool in the Detection of Incidental Pulmonary Embolism on Oncology Assessment Scans. Samy Ammari, Astrid Orfali Camez, Angela Ayobi, et al. 11, místo neznámé : Life, 2024, Sv. 14. https://doi.org/10.3390/life14111347.
Přejít k původnímu zdroji...
Přejít na PubMed... - The Use of Artificial Intelligence Technology in the Detection and Treatment of Pulmonary Embolism at a Tertiary Referral Center. Jacob Shapiro, Adam Reichard, Saba Chowdhry, et al. 3, místo neznámé : Journal of Vascular Surgery, 2023, Sv. 78.
Přejít k původnímu zdroji... - Shorter Time to Assessment and Anticoagulation with Decreased Mortality in Patients with Pulmonary Embolism Following Implementation of Artificial Intelligence Software. Jacob Shapiro, Saba Chowdhry, Adam Reichard, et al. 3, místo neznámé : Journal of Vascular Surgery: Venous and Lymphatic Disorders, 2024, Sv. 12.
Přejít k původnímu zdroji... - Diagnostic Performance of a Deep Learning-Powered Application for Aortic Dissection Triage Prioritization and Classification. Laletin, V., Ayobi, A., Chang, P. D, et al. 17, místo neznámé : Diagnostics, 2024, Sv. 14. https://doi.org/10.3390/diagnostics14171877.
Přejít k původnímu zdroji...
Přejít na PubMed... - Enhancing Radiologist Efficiency with AI: A Multi-Reader Multi-Case Study on Aortic Dissection Detection and Prioritization. Cotena, M., Ayobi, A., Zuchowski, C., et al. 23, místo neznámé : Diagnostics, 2024, Sv. 14. https://doi.org/10.3390/diagnostics14232689.
Přejít k původnímu zdroji...
Přejít na PubMed... - https://cath.works/. [Online] CathWorks. https://cath.works/cathworks-ffrangio/.
- Matsuo Hitoshi. https://media.pcronline.com. [Online] EuroPCR2025, 2025. [Citace: 26. 92025.] https://media.pcronline.com/diapos/EuroPCR2025/8147-20250522_1250_Room_241_Matsuo_Hitoshi_11_(58377)/Matsuo_Hitoshi_20250522_1230_Room_241.pdf.
- prnewswire.com. [Online] 2024. [Citace: 2025. 92025.] https://www.prnewswire.com/news-releases/provision-study-which-met-its-primary-endpoint-now-demonstrates-similar-clinical-outcomes-for-ffrangio-and-ffr-302462921.html.
- www.caristo.com. [Online] [Citace: 26. 92025.] https://www.caristo.com/cari-heart-technology/.
- Inflammatory risk and cardiovascular events in patients without obstructive coronary artery disease: the ORFAN multicentre, longitudinal cohort study. Chan, KennethThomas, Sheena et al. 10444, místo neznámé : The Lancet, 2024, Sv. 403.
- A cloud-based medical device for predicting cardiac risk in suspected coronary artery disease: a rapid review and conceptual economic model. Westwood M, Armstrong N, Krijkamp E, et al. 31, místo neznámé : Health Technology Assessment, 2024, Sv. 28. doi: 10.3310/WYGC4096.
Přejít k původnímu zdroji...
Přejít na PubMed... - Impact Of Cari-heart® Analysis On Clinical Management In Patients Undergoing Coronary Computed Tomography Angiography For The Evaluation Of Coronary Artery Disease: A United States Real-world Clinical Site Experience. D. Thomas, S. Bloom, M. Rane, et al. 4, místo neznámé : Journal of Cardiovascular Computed Tomography, 2025, Sv. 19.
Přejít k původnímu zdroji... - [Online] UltraSight. [Citace: 27. 92025.] https://ultrasight.com/new-study-reveals-ultrasight-sheba-medical-center-enable-novice-ultrasound-users-to-obtain-accurate-diagnostic-quality-cardiac-images/.
- AI-enhanced guidance demonstrated improvement in novices' Apical-4-chamber and Apical-5-chamber views. Ofri Karni, Itamar Ben Shitrit, Amit Perlin, et al. místo neznámé : BMC Medical Education, 2025, Sv. 25. https://doi.org/10.1186/s12909-025-06905-5.
Přejít k původnímu zdroji...
Přejít na PubMed... - caption-care. [Online] [Citace: 28. 92025.] https://www.caption-care.com/about-us.
- Utility of a Deep-Learning Algorithm to Guide Novices to Acquire Echocardiograms for Limited Diagnostic Use. Narang A, Bae R, Hong H, et al. 6, místo neznámé : JAMA Cardiology, 2021, Sv. 6. doi:10.1001/jamacardio.2021.0185.
Přejít k původnímu zdroji...
Přejít na PubMed... - Real world evaluation of artificial intelligence echocardiography image guidance and acquisition with novice scanners in multiple clinical settings. DA Burke, N Corrigan, M Herlihy, et al. místo neznámé : European Heart Journal - Cardiovascular Imaging, 2022, Sv. 23. https://doi.org/10.1093/ehjci/jeab289.011.
Přejít k původnímu zdroji... - AI-GUIDED ECHOCARDIOGRAPHY SYSTEM MATCHES THE IMAGE QUALITY ASSESSMENT ABILITY OF CARDIAC SONOGRAPHERS. Ha Hong, Samuel Surette, Ali Khalid Chaudhry, et al. 18, místo neznámé : Journal of the American College of Cardiology, 2021, Sv. 77.
Přejít k původnímu zdroji... - A machine learning algorithm supports ultrasound-naïve novices in the acquisition of diagnostic echocardiography loops and provides accurate estimation of LVEF. Schneider, M., Bartko, P., Geller, W. et al. místo neznámé : The International Journal of Cardiovascular Imaging, 2021, Sv. 37. https://doi.org/10.1007/s10554-020-02046-6.
Přejít k původnímu zdroji...
Přejít na PubMed... - www.caristo.com. [Online] Caristo, 102024. [Citace: 26. 92025.] https://www.caristo.com/new-study-cari-heart-technology-highly-cost-effective-in-the-nhs/.




