Vnitr Lek 2019, 65(2):86-97 | DOI: 10.36290/vnl.2019.021

Heterogeneity of lymphocytes as central operating units of the immune system

Milan Buc
Imunologický ústav LF UK v Bratislave, Slovenská republika

Immune response is divided into natural and adaptive although such strict division is rather contentious as one type of immunity influences another one and vice-versa; moreover, there are cells and immune mechanisms, which stay somewhere in an interface. B and T lymphocytes represent principal cells of adaptive immunity. Not one of them form a uniform population. B cells comprise of three subpopulations (follicular, B1, marginal zone). Concerning T cells, the situation is more complicated. There are two basic populations, that expressing T cell receptors α, β and that expressing γ, δ receptors. T cells αβ are very heterogeneous; we can distinguish helper, cytotoxic and regulatory cells. Moreover, among T helper cell, are there seven subsets. Except the above-mentioned effector B and T cells, each group has its counterpart in the form of memory cells, wherein the memory T cell are of three types. The other group of lymphocytes represent so-called unconventional cells. NK, NKT a MAIT are their representatives; they are also heterogeneous. Ultimately, a novel group of cells appeared recently. It stays just on the interphase between natural and adaptive immunity. We know these cells under the name innate lymphoid cells (ILCs). They are also not uniform - three basic populations are well characterized: ILC1, ILC2, ILC3. Moreover, in the frame of each family, we can distinguish more subsets. Enumeration of said cell types indicates complexity and mutual interconnection of immune processes in order to maintain biological integrity of an individual.

Keywords: B cells; ILC cells; MAIT; NK; NKT; subsets of lymphoid cells; T cells

Received: June 8, 2018; Accepted: November 26, 2018; Published: February 1, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Buc M. Heterogeneity of lymphocytes as central operating units of the immune system. Vnitr Lek. 2019;65(2):86-97. doi: 10.36290/vnl.2019.021.
Download citation

References

  1. LeBien TW, Tedder TF. B lymphocytes: how they develop and function. Blood 2008; 112(5): 1570-1580. Dostupné z DOI: <http://dx.doi.org/10.1182/blood-2008-02-078071>. Go to original source... Go to PubMed...
  2. Harwood NE, Batista FD. Early events in B cell activation. Annu Rev Immunol 2010; 28: 185-210. Dostupné z DOI: <http://dx.doi.org/10.1146/annurev-immunol-030409-101216>. Go to original source... Go to PubMed...
  3. Nutt SL, Hodgkin PD, Tarlinton DM et al. The generation of antibody-secreting plasma cells. Nat Rev Immunol 2015; 15(3): 160-171. Dostupné z DOI: <http://dx.doi.org/10.1038/nri3795>. Go to original source... Go to PubMed...
  4. Eckschlager T. The CD nomenclature of leukocyte antigens. [Comment on Koubek K. The CD nomenclature of leukocyte antigens Vnitř Lék 2003; 49(1): 66-72]. Vnitř Lék 2003; 49(1): 20. Go to PubMed...
  5. Kurosaki T, Shinohara H, Baba Y. B cell signaling and fate decision. Annu Rev Immunol 2010; 28: 21-55. Dostupné z DOI: <http://dx.doi.org/10.1146/annurev.immunol.021908.132541>. Go to original source... Go to PubMed...
  6. Treanor B. B-cell receptor: from resting state to activate. Immunology 2012; 136(1): 21-27. Dostupné z DOI: <http://dx.doi.org/10.1111/j.1365-2567.2012.03564.x>. Go to original source... Go to PubMed...
  7. Cerutti A, Cols M, Puga I. Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat Rev Immunol 2013; 13(2): 118-132. Dostupné z DOI: <http://dx.doi.org/10.1038/nri3383>. Go to original source... Go to PubMed...
  8. Klein U, Dalla-Favera R. Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol 2008; 8(1): 22-33. Dostupné z DOI: <http://dx.doi.org/10.1038/nri2217>. Go to original source... Go to PubMed...
  9. Popi AF, Lopes JD, Mariano M. Interleukin-10 secreted by B-1 cells modulates the phagocytic activity of murine macrophages in vitro. Immunology 2004; 113(3): 348-354. Dostupné z DOI: <http://dx.doi.org/10.1111/j.1365-2567.2004.01969.x>. Go to original source... Go to PubMed...
  10. Hardy RR, Hayakawa K. B cell development pathways. Annu Rev Immunol 2001; 19: 595-621. Dostupné z DOI: <http://dx.doi.org/10.1146/annurev.immunol.19.1.595>. Go to original source... Go to PubMed...
  11. Griffin DO, Holodick NE, Rothstein TL. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70. J Exp Med 2011; 208(1): 67-80. Dostupné z DOI: <http://dx.doi.org/10.1084/jem.20101499>. Erratum in J Exp Med 2011; 208(2): 409. J Exp Med 2011; 208(4): 871. J Exp Med 2011; 208(1) :67. Go to original source... Go to PubMed...
  12. Jones DD, Racine R, Wittmer ST et al. The omentum is a site of protective IgM production during intracellular bacterial infection. Infect Immun 2015; 83(5): 2139-2147. Dostupné z DOI: <http://dx.doi.org/10.1128/IAI.00295-15>. Go to original source... Go to PubMed...
  13. Montecino-Rodriguez E, Dorshkind K. B-1 B cell development in the fetus and adult. Immunity 2012; 36(1): 13-21. Dostupné z DOI: <http://dx.doi.org/10.1016/j.immuni.2011.11.017>. Go to original source... Go to PubMed...
  14. Kasaian MT, Casali P. Autoimmunity-prone B-1 (CD5 B) cells, natural antibodies and self recognition. Autoimmunity 1993; 15(4): 315-329. Go to original source... Go to PubMed...
  15. Tierens A, Delabie J, Michiels L et al. Marginal-zone B cells in the human lymph node and spleen show somatic hypermutations and display clonal expansion. Blood 1999; 93(1): 226-234. Go to original source...
  16. Dono M, Zupo S, Leanza N et al. Heterogeneity of tonsillar subepithelial B lymphocytes, the splenic marginal zone equivalents. J Immunol 2000; 164(11): 5596-5604. Go to original source... Go to PubMed...
  17. Weller S, Braun MC, Tan BK et al. Human blood IgM "memory" B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood 2004; 104(12): 3647-3654. Dostupné z DOI: <http://dx.doi.org/10.1182/blood-2004-01-0346>. Go to original source... Go to PubMed...
  18. Kurosaki T, Kometani K, Ise W. Memory B cells. Nat Rev Immunol 2015; 15(3): 149-159. Dostupné z DOI: <http://dx.doi.org/10.1038/nri3802>. Go to original source... Go to PubMed...
  19. Seifert M, Kuppers R. Human memory B cells. Leukemia 2016; 30(12): 2283-2292. Dostupné z DOI: <http://dx.doi.org/10.1038/leu.2016.226>. Go to original source... Go to PubMed...
  20. Nathan C, Ding A. Nonresolving inflammation. Cell 2010; 140(6): 871-882. Dostupné z DOI: <http://dx.doi.org/10.1016/j.cell.2010.02.029>. Go to original source... Go to PubMed...
  21. Rosser EC, Mauri C. Regulatory B cells: origin, phenotype, and function. Immunity 2015; 42(4): 607-612. Dostupné z DOI: <http://dx.doi.org/10.1016/j.immuni.2015.04.005>. Go to original source... Go to PubMed...
  22. Kumar BV, Connors TJ, Farber DL. Human T Cell Development, Localization, and Function throughout Life. Immunity 2018; 48(2): 202-213. Dostupné z DOI: <http://dx.doi.org/10.1016/j.immuni.2018.01.007>. Go to original source... Go to PubMed...
  23. Gao YL, Chai YF, Qi AL et al. Neuropilin-1highCD4(+)CD25(+) Regulatory T Cells Exhibit Primary Negative Immunoregulation in Sepsis. Mediators Inflamm 2016; 2016: 7132158. Dostupné z DOI: <http://dx.doi.org/10.1155/2016/7132158>. Go to original source... Go to PubMed...
  24. den Braber I, Mugwagwa T, Vrisekoop N et al. Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 2012; 36(2): 288-297. Dostupné z DOI: <http://dx.doi.org/10.1016/j.immuni.2012.02.006>. Go to original source... Go to PubMed...
  25. van den Broek T, Borghans JAM, van Wijk F. The full spectrum of human naive T cells. Nat Rev Immunol 2018; 18(6): 363-373. Dostupné z DOI: <http://dx.doi.org/10.1038/s41577-018-0001-y>. Go to original source... Go to PubMed...
  26. Mosmann TR, Cherwinski H, Bond MW et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986; 136(7): 2348-2357. Go to original source...
  27. Zhu J, Paul WE. Heterogeneity and plasticity of T helper cells. Cell Res 2010; 20(1): 4-12. Dostupné z DOI: <http://dx.doi.org/10.1038/cr.2009.138>. Go to original source... Go to PubMed...
  28. Kallies A, Good-Jacobson KL. Transcription Factor T-bet Orchestrates Lineage Development and Function in the Immune System. Trends Immunol 2017; 38(4): 287-297. Dostupné z DOI: <http://dx.doi.org/10.1016/j.it.2017.02.003>. Go to original source... Go to PubMed...
  29. Eberl G. Immunity by equilibrium. Nat Rev Immunol 2016; 16(8): 524-532. Dostupné z DOI: <http://dx.doi.org/10.1038/nri.2016.75>. Go to original source... Go to PubMed...
  30. Schmitt E, Klein M, Bopp T. Th9 cells, new players in adaptive immunity. Trends Immunol 2014; 35(2): 61-68. Dostupné z DOI: <http://dx.doi.org/10.1016/j.it.2013.10.004>. Go to original source... Go to PubMed...
  31. Kaplan MH, Hufford MM, Olson MR. The development and in vivo function of T helper 9 cells. Nat Rev Immunol 2015; 15(5): 295-307. Dostupné z DOI: <http://dx.doi.org/10.1038/nri3824>. Go to original source... Go to PubMed...
  32. Colonna M Skin function for human CD1a-reactive T cells. Nat Immunol 2010; 11: 1079-1080.
  33. Sonnenberg GF, Fouser LA, Artis D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol 2011; 12(5): 383-390. Dostupné z DOI: <http://dx.doi.org/10.1038/ni.2025>. Go to original source... Go to PubMed...
  34. Vinuesa CG, Tangye SG, Moser B et al. Follicular B helper T cells in antibody responses and autoimmunity. Nat Rev Immunol 2005; 5(11): 853-865. Dostupné z DOI: <http://dx.doi.org/10.1038/nri1714>. Go to original source... Go to PubMed...
  35. Barry M, Bleackley RC. Cytotoxic T lymphocytes: all roads lead to death. Nat Rev Immunol 2002; 2(6): 401-409. Dostupné z DOI: <http://dx.doi.org/10.1038/nri819>. Go to original source... Go to PubMed...
  36. Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 2012; 30: 531-564. Dostupné z DOI: <http://dx.doi.org/10.1146/annurev.immunol.25.022106.141623>. Go to original source... Go to PubMed...
  37. Buc M. Role of regulatory T cells in pathogenesis and biological therapy of multiple sclerosis. Mediators Inflamm 2013; 2013: 963748. Dostupné z DOI: <http://dx.doi.org/10.1155/2013/963748>. Go to original source... Go to PubMed...
  38. Sakaguchi S, Yamaguchi T, Nomura T et al. Regulatory T cells and immune tolerance. Cell 2008; 133(5): 775-787. Dostupné z DOI: <http://dx.doi.org/10.1016/j.cell.2008.05.009>. Go to original source... Go to PubMed...
  39. Pepper M, Jenkins MK. Origins of CD4(+) effector and central memory T cells. Nat Immunol 2011; 12(6): 467-471. Go to original source... Go to PubMed...
  40. Finlay D, Cantrell DA. Metabolism, migration and memory in cytotoxic T cells. Nat Rev Immunol 2011; 11(2): 109-117. Dostupné z DOI: <http://dx.doi.org/10.1038/nri2888>. Go to original source... Go to PubMed...
  41. Sallusto F, Lenig D, Forster R et al. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999; 401(6754): 708-712. Go to original source... Go to PubMed...
  42. Mueller SN, Mackay LK. Tissue-resident memory T cells: local specialists in immune defence. Nat Rev Immunol 2016; 16(2): 79-89. Dostupné z DOI: <http://dx.doi.org/10.1038/nri.2015.3>. Go to original source... Go to PubMed...
  43. Ciofani M, Zuniga-Pflucker JC. Determining gammadelta versus alphass T cell development. Nat Rev Immunol 2010; 10(9): 657-663. Dostupné z DOI: <http://dx.doi.org/10.1038/nri2820>. Go to original source... Go to PubMed...
  44. Nielsen MM, Witherden DA, Havran WL. γδ T cells in homeostasis and host defence of epithelial barrier tissues. Nat Rev Immunol 2017; 17(12): 733-745. Dostupné z DOI: <http://dx.doi.org/10.1038/nri.2017.101>. Go to original source... Go to PubMed...
  45. Caligiuri MA. Human natural killer cells. Blood 2008; 112(3): 461-469. Dostupné z DOI: <http://dx.doi.org/10.1182/blood-2007-09-077438>. Go to original source... Go to PubMed...
  46. Vivier E, Tomasello E, Baratin M et al. Functions of natural killer cells. Nat Immunol 2008; 9(5): 503-510. Dostupné z DOI: <http://dx.doi.org/10.1038/ni1582>. Go to original source... Go to PubMed...
  47. Poli A, Michel T, Patil N et al. Revisiting the Functional Impact of NK Cells. Trends Immunol 2018; 39(6): 460-472. Dostupné z DOI: <http://dx.doi.org/10.1016/j.it.2018.01.011>. Go to original source... Go to PubMed...
  48. O'Sullivan TE, Sun JC, Lanier LL. Natural Killer Cell Memory. Immunity 2015; 43(4): 634-645. Dostupné z DOI: <http://dx.doi.org/10.1016/j.immuni.2015.09.013>. Go to original source... Go to PubMed...
  49. Cerwenka A, Lanier LL. Natural killer cell memory in infection, inflammation and cancer. Nat Rev Immunol 2016; 16(2): 112-123. Dostupné z DOI: <http://dx.doi.org/10.1038/nri.2015.9>. Go to original source... Go to PubMed...
  50. Brennan PJ, Brigl M, Brenner MB. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol 2013; 13(2): 101-117. Dostupné z DOI: <http://dx.doi.org/10.1038/nri3369>. Go to original source... Go to PubMed...
  51. Birkholz AM, Kronenberg M. Antigen specificity of invariant natural killer T-cells. Biomed J 2015; 38(6): 470-483. Dostupné z DOI: <http://dx.doi.org/10.1016/j.bj.2016.01.003>. Go to original source... Go to PubMed...
  52. Rossjohn J, Pellicci DG, Patel O et al. Recognition of CD1d-restricted antigens by natural killer T cells. Nat Rev Immunol 2012; 12(12): 845-857. <http://dx.doi.org/10.1038/nri3328>. Go to original source... Go to PubMed...
  53. Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol 2007; 25: 297-336. Dostupné z DOI: <http://dx.doi.org/10.1146/annurev.immunol.25.022106.141711>. Go to original source... Go to PubMed...
  54. Gold MC, Eid T, Smyk-Pearson S et al. Human thymic MR1-restricted MAIT cells are innate pathogen-reactive effectors that adapt following thymic egress. Mucosal Immunol 2013; 6(1): 35-44. Dostupné z DOI: <http://dx.doi.org/10.1038/mi.2012.45>. Go to original source... Go to PubMed...
  55. Treiner E, Duban L, Bahram S et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 2003; 422(6928): 164-169. Dostupné z DOI: <http://dx.doi.org/10.1038/nature01433>. Erratum in Nature 2003; 423(6943): 1018. Go to original source... Go to PubMed...
  56. Kjer-Nielsen L, Patel O, Corbett AJ et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 2012; 491(7426): 717-723. Dostupné z DOI: <http://dx.doi.org/10.1038/nature11605>. Go to original source... Go to PubMed...
  57. Huang S, Gilfillan S, Cella M et al. Evidence for MR1 antigen presentation to mucosal-associated invariant T cells. J Biol Chem 2005; 280(22): 21183-21193. Dostupné z DOI: <http://dx.doi.org/10.1074/jbc.M501087200>. Go to original source... Go to PubMed...
  58. Hinks TS. Mucosal-associated invariant T cells in autoimmunity, immune-mediated diseases and airways disease. Immunology 2016; 148(1): 1-12. <http://dx.doi.org/10.1111/imm.12582>. Go to original source... Go to PubMed...
  59. Napier RJ, Adams EJ, Gold MC et al. The Role of Mucosal Associated Invariant T Cells in Antimicrobial Immunity. Front Immunol 2015; 6: 344. Dostupné z DOI: <http://dx.doi.org/10.3389/fimmu.2015.00344>. Go to original source... Go to PubMed...
  60. Vely F, Barlogis V, Vallentin B et al. Evidence of innate lymphoid cell redundancy in humans. Nat Immunol 2016; 17(11): 1291-1299. Dostupné z DOI: <http://dx.doi.org/10.1038/ni.3553>. Erratum in Corrigendum: Evidence of innate lymphoid cell redundancy in humans. [Nat Immunol. 2016]. Go to original source... Go to PubMed...
  61. Bando JK, Colonna M. Innate lymphoid cell function in the context of adaptive immunity. Nat Immunol 2016; 17(7): 783-789. Dostupné z DOI: <http://dx.doi.org/10.1038/ni.3484>. Go to original source... Go to PubMed...
  62. Spits H, Artis D, Colonna M et al. Innate lymphoid cells - a proposal for uniform nomenclature. Nat Rev Immunol 2013; 13(2): 145-149. Dostupné z DOI: <http://dx.doi.org/10.1038/nri3365>. Go to original source... Go to PubMed...
  63. Daussy C, Faure F, Mayol K et al. T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J Exp Med 2014; 211(3): 563-577. Dostupné z DOI: <http://dx.doi.org/10.1084/jem.20131560>. Go to original source... Go to PubMed...
  64. Ebbo M, Crinier A, Vely F et al. Innate lymphoid cells: major players in inflammatory diseases. Nat Rev Immunol 2017; 17(11): 665-678. Dostupné z DOI: <http://dx.doi.org/10.1038/nri.2017.86>. Go to original source... Go to PubMed...
  65. Spits H, Bernink JH, Lanier L. NK cells and type 1 innate lymphoid cells: partners in host defense. Nat Immunol 2016; 17(7): 758-764. Dostupné z DOI: <http://dx.doi.org/10.1038/ni.3482>. Go to original source... Go to PubMed...
  66. Fuchs A. ILC1s in Tissue Inflammation and Infection. Front Immunol 2016; 7: 104. Dostupné z DOI: <http://dx.doi.org/10.3389/fimmu.2016.00104>. Go to original source... Go to PubMed...
  67. Buc M. Crohns disease and ulcerative colitis - current view on genetic determination, immunopathogenesis and biologic therapy. Epidemiol Mikrobiol Imunol 2017; 66(4): 189-197.
  68. Monticelli LA, Sonnenberg GF, Abt MC et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol 2011; 12(11): 1045-1054. Dostupné z DOI: <http://dx.doi.org/10.1031/ni.2131>. Go to original source...
  69. Klose CS, Artis D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol 2016; 17(7): 765-774. Dostupné z DOI: <http://dx.doi.org/10.1038/ni.3489>. Go to original source... Go to PubMed...
  70. Licona-Limon P, Kim LK, Palm NW et al. TH2, allergy and group 2 innate lymphoid cells. Nat Immunol 2013; 14(6): 536-542. Dostupné z DOI: <http://dx.doi.org/10.1038/ni.2617>. Erratum in Nat Immunol 2014; 15(1): 109. Go to original source... Go to PubMed...
  71. Mebius RE. Organogenesis of lymphoid tissues. Nat Rev Immunol 2003; 3(4): 292-303. Dostupné z DOI: <http://dx.doi.org/10.1038/nri1054>. Go to original source... Go to PubMed...
  72. van de Pavert SA, Mebius RE. New insights into the development of lymphoid tissues. Nat Rev Immunol 2010; 10(9): 664-674. Dostupné z DOI: <http://dx.doi.org/10.1038/nri2832>. Go to original source... Go to PubMed...
  73. Yazdani R, Sharifi M, Shirvan AS et al. Characteristics of innate lymphoid cells (ILCs) and their role in immunological disorders (an update). Cell Immunol 2015; 298(1-2): 66-76. Dostupné z DOI: <http://dx.doi.org/10.1016/j.cellimm.2015.09.006>. Go to original source... Go to PubMed...
  74. Dudakov JA, Hanash AM, van den Brink MR. Interleukin-22: immunobiology and pathology. Annu Rev Immunol 2015; 33: 747-785. Dostupné z DOI: <http://dx.doi.org/10.1146/annurev-immunol-032414-112123>. Go to original source... Go to PubMed...
  75. Korn T, Bettelli E, Oukka M et al. IL-17 and Th17 Cells. Annu Rev Immunol 2009; 27: 485-517. Dostupné z DOI: <http://dx.doi.org/10.1146/annurev.immunol.021908.132710>. Go to original source... Go to PubMed...
  76. Buc M. Charakteristika a funkcia ILC-buniek za fyziologických a patologických podmienok. Alergie 2017; 19(1): 24-30.




Vnitřní lékařství

Madam, Sir,
please be aware that the website on which you intend to enter, not the general public because it contains technical information about medicines, including advertisements relating to medicinal products. This information and communication professionals are solely under §2 of the Act n.40/1995 Coll. Is active persons authorized to prescribe or supply (hereinafter expert).
Take note that if you are not an expert, you run the risk of danger to their health or the health of other persons, if you the obtained information improperly understood or interpreted, and especially advertising which may be part of this site, or whether you used it for self-diagnosis or medical treatment, whether in relation to each other in person or in relation to others.

I declare:

  1. that I have met the above instruction
  2. I'm an expert within the meaning of the Act n.40/1995 Coll. the regulation of advertising, as amended, and I am aware of the risks that would be a person other than the expert input to these sites exhibited


No

Yes

If your statement is not true, please be aware
that brings the risk of danger to their health or the health of others.